
Functional Verification of SiCortex Multiprocessor
System-on-a-Chip

Oleg Petlin and Wilson Snyder
SiCortex Inc.

Three Clocktower Place, Suite 210
Maynard, MA 01721,USA

wsnyder@wsnyder.org

ABSTRACTThis paper disusses funtional veri�ation of the SiCor-tex multiproessor ompute node. It is shown that the im-plementation of reusable veri�ation methodology, applia-ble at the blok- and hip-level, ombined with a �exibleSystemC testbenh design inreases the level of veri�ationprodutivity. Also, it is demonstrated how veri�ation pro-dutivity an be improved by using open soure veri�a-tion tools. The simulation approah desribed in the paperprovides a powerful mehanism for ontrolling the simula-tion speed, auray, and overall veri�ation ost. As a re-sult, the SiCortex veri�ation team was able to �nd morebugs faster and to start o-veri�ation in early stages of theprojet development.
Categories and Subject DescriptorsB.6.3 [Design Aids℄: Veri�ation
General TermsDesign, Veri�ation
KeywordsFuntional veri�ation, o-veri�ation, Verilog, SystemC, C++,modeling, overage, regression testing, ode reuse
1. INTRODUCTIONSiCortex luster omputer systems deliver high applia-tion performane with less power dissipation and smallersystem sizes for low ost. Eah system is omposed of alarge number of six-way Symmetri Multiproessor (SMP)ompute nodes that run the Linux operating system anduse the Message Passing Interfae (MPI) for ommuniationbetween nodes. For example, the SC5832 system ontains972 ompute nodes onneted together in a degree-3 Kautzgraph and delivers peak performane of 5.8 tera�ops in aompat, low power abinet [1℄.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’07,June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM 1-59593-057-4/05/0004 ...$5.00.

Figure 1 shows a blok diagram of the SiCortex omputenode. The node is an SMP system-on-a-hip (SOC) withoherent L1 and L2 ahes, two DDR-2 memory interfaes,a PCI Express (PCIe) interfae to external I/O devies, anda programmable DMA interfae to the fabri swith. Thenode proessors are based on a 64-bit MIPS ore with 32KBinstrution and data ahes. The design intent of the SiCor-tex ompute node is to provide for low main memory (L2ahe miss) and low ommuniation latenies, high memorybandwidth, low power (measured in FLOPS per watt), anda omplete Linux operating system support with kernel anddevie drivers.

Figure 1: SiCortex Compute NodeThe ultimate goal of funtional veri�ation is to prove thatthe design intent of the devie under veri�ation (DUV) ispreserved in its implementation [2℄. Thus, funtional ver-i�ation of the hip an be divided into two parts: designveri�ation and hardware/software o-veri�ation. The ver-i�ation hallenge is driven by the following major fators:high design omplexity (198 million transistors); the pres-ene of both the purhased design IPs and internally de-veloped bloks; high devie programmability; and Verilogsimulator speed and liense limitations.
2. VERIFICATION APPROACH

2.1 Verification ModelsThe design intent is normally stated in the design spe-i�ation. A design model is needed to apture the designintent. In theory, there an be many implementations ofthe same design intent. The veri�ation team reated pre-ditor and heker models from the design spei�ation toprovide for self-heking of the design and implementationintent. The arhiteture team developed more re�ned Sys-temC yle-aurate High Level Models (HLMs) to apturethe target arhiteture implementation details. The imple-mentation team wrote Verilog RTL models based on theirorresponding HLMs.

Figure 2: Veri�ation Model HierarhyFigure 2 shows the veri�ation model hierarhy that on-sists of three levels: intent veri�ation, equivalene hek-ing, and design implementation veri�ation. The veri�a-tion team started with the development of veri�ation plansfor the orresponding design bloks. The intent veri�ationwas �nished upon the ompletion of all veri�ation tests andthe ahievement of the funtional overage riteria. Thenthe same set of tests were applied to the RTL model. Theoverage riteria in this ase inluded both the funtionaloverage and Verilog ode overage data. When either fun-tional or ode overage results were found unsatisfatory,more tests were written. For a number of bloks, suh asthe DMA engine and L2 ahe, veri�ation tests were run inparallel against both their yle-aurate HLMs and the or-responding Verilog RTL implementations to prove that theHLM and RTL models were equivalent (equivalene hek-ing) and funtionally orret.
2.2 Simulation ModelsThe SiCortex SOC was designed from a number of pur-hased design IPs and ustom designed bloks. All designIPs were delivered as synthesizable Verilog RTL models,whereas most of the SiCortex ustom bloks had both Sys-temC HLM and Verilog RTL implementations. In addition,the 64-bit MIPS proessor design was modelled using theSimH instrution-aurate behavioral simulator [3℄.All synthesizable Verilog RTL models an be onvertedinto fast C++/SystemC yle-aurate models using Veri-lator [4℄. Verilated RTL models are simulated liense-freeusing the OSCI SystemC simulator providing more simula-tion yles at no ost. Figure 3 shows the integration of var-ious blok-level simulation models intended to meet speed,auray, and simulation ost requirements.

Figure 3: Integration of the Simulation ModelsThere are two hip simulation models: the SystemC hipmodel and Verilog pakage wrapper model. The later in-stantiates the RTL and gate-level Verilog hip models. Notethat both wrappers are instantiated in the same SystemCtestbenh. In the SystemC hip model, all onnetivity be-tween the subhip bloks are desribed in SystemC and eahC/C++, SystemC, or Verilog RTL blok model is instanti-ated in its SystemC wrapper (see Figure 3). In addition,some bloks an be instantiated as BFMs under the ontrolof veri�ation test drivers that supply stimuli to and olletresponses from the adjaent bloks under veri�ation. TheSOC simulation on�guration, whih spei�es how eah sub-hip blok is modelled, is desribed in a Perl hash struturethat instruts the build sript how to ompile the SOC sim-ulation model. There are several important advantages ofthis simulation approah:
• It provides great �exibility for the veri�ation of in-dividual bloks and di�erent ombinations of subhipbloks under one SystemC hip wrapper;
• Liense-free simulations an be ahieved by hoosingany ombination of Verilated RTL models, SystemCHLMs, behavioral models, and BFMs.

2.3 Testbench DesignThe main goals of the testbenh design are to redue thetest development yle, failitate the proess of debugging,inrease veri�ation ode reusability, and inrease the levelof funtional overage. The testbenh implementation isbased on a layered approah where eah layer provides a setof servies depending on the test abstration level. Thereare three basi testbenh layers:
• Test spei�ation and ontrol layer (test senario, ov-erage, and test ompletion managers);
• Intent veri�ation support layer (tra� manager andsoreboard);
• Design implementation veri�ation layer (interfae BFMs,preditors/hekers, and monitors).

2.4 Test Writing MethodologyEvery test is desribed as a C++ lass that inherits theSxTest base lass as follows:

lass myTest : publi SxTest {virtual void init(); ///< init methodvirtual void spawned(); ///< spawned methodvirtual void final(); ///< test final method};There are three virtual methods that the test writer needsto de�ne: init(), spawned(), and final(). The init()method is needed to reset the DUV with other veri�ationelements. The spawned() method desribes how to exe-ute the test. Both the init() and spawned() methods arespawned dynamially by the SystemC s_spawn() method.The launhing of a test inludes the instantiation of the testlass and a subsequent all to the test base run() methodshown below:void SxTest::spawnTop() {init();spawned();}void SxTest::run() {s_spawn_options opts;s_spawn(s_bind(&SxTest::spawnTop, this),"spawnTop", &opts);while (!finished()) poll();final();}After spawning the spawned() method, the test enters theloal while loop. Communiation between a test and itsBFMs is implemented via test driver methods spawned bythe test spawned()method. The loop exits when the finished()method evaluates the test ompletion riteria as true. Fi-nally, the final() method is alled to ollet test statistialdata.
3. VERIFICATION PRODUCTIVITYIn prinipal, produtivity an be measured by the timespent on a spei� task and the osts assoiated with itsexeution. The produtivity of hardware veri�ation de-pends on reusability of the veri�ation methodology andode, the use of automation tools, regression testing support,o-veri�ation support, and ontrol over the use of lienses[5℄. Sine the ultimate goal of veri�ation is to �nd bugs inthe most e�ient way, a great deal of time was devoted totools, ode reuse, and regression testing support.
3.1 Verification Tools

3.1.1 Languages, libraries, and simulatorsC++ standard template library (STL) was used through-out the projet to failitate the development of C++ ver-i�ation ode [6℄. Also, the onstraint and weighted ran-domization support lasses and tehniques provided by theSystemC veri�ation (SCV) library were widely used [7℄.To inrease the veri�ation abstration level while handlingdi�erent types of data transations, the OSCI TransationLevel Modeling (TLM) library was used in the developmentof BFMs and monitors. The standard OSCI SystemC sim-ulator was used to simulate SystemC hip models and de-bug tests. In addition, Cadene's Inisive Uni�ed mixed-language NCSIM simulator was used to simulate Verilog andSystemC models.

3.1.2 Open source productivity toolsDuring the ourse of veri�ation, Vregs and SystemPerlopen soure veri�ation produtivity tools were used. TheVregs tool reates Verilog headers, C++ headers, C++ lasses,and veri�ation tests for all hip status ontrol registers(CSRs) from the spei�ation [8℄. As a result, CSR spe-i�ations and veri�ation ode are always up-to-date. Sys-temPerl is a preproessor that translates simpli�ed SystemClike ode into standard C++/SystemC ode for ompilation[4℄. SystemPerl provides a rih set of maros, ating as dire-tives, to generate orret C++/SystemC �les. SystemPerlsaves lose to 40% of SystemC lines, resulting in fewer typosand ompile errors.
3.2 Code ReuseCode reuse in the SiCortex veri�ation environment wasahieved primarily by developing a uni�ed veri�ation method-ology based on a set of industry standard languages andlibraries.
3.2.1 Encapsulation, inheritance, and polymorphismC++ provides powerful apabilities, suh as enapsula-tion, inheritane, and polymorphism, for improving odestruture and reusability [6℄. From the design perspetive,a polymorphi base lass is a base lass that is designedfor use by other objets. The proess of reating tests re-quires the development of base lasses with servie methodsdesigned to handle the DUV spei� ontrol and data ma-nipulation funtions. Every new test an simply inherit orenapsulate all neessary base lasses to handle low level op-erations, whereas the test writer fouses on writing new testsenarios at a higher abstration level. Thus, onsisteny,debugability, and reusability of the veri�ation ode an bemaintained.
3.2.2 Verification infrastructure reuseThe real value of the veri�ation infrastruture is in theutilization of its support layer funtions and testbenh el-ements during the development and debugging of tests [5℄.All veri�ation tests, inluding the testbenh omponents,suh as BFMs, monitors, hekers, and preditors, are reusedto verify both the SystemC and Verilog hip models. Eahtest was designed using the DUV spei� and ommon (SCVlibrary, STL, et.) C++ libraries.
3.2.3 Recycling subchip testsHigh ode reusabilty was ahieved during the hip-levelveri�ation e�ort by reusing the tests originally written toverify subhip on�gurations, suh as PCIe, DMA, and mem-ory system. Below is a simpli�ed example of the ChipTesthip-level test lass derived from the SxTest base lass:lass ChipTest : publi SxTest {strut PieBaseTest* piTest;strut DmaBaseTest* dmaTest;strut MemBaseTest* memTest;virtual void piSpawn() {piTest->spawned();}virtual void dmaSpawn() {dmaTest->spawned();}virtual void memSpawn() {memTest->spawned();}virtual void init();virtual void spawned();virtual void final();}

void ChipTest::spawned() {SC_FORKs_spawn(s_bind(&ChipTest::piSpawn, this),"pitest", &opts),s_spawn(s_bind(&ChipTest::dmaSpawn, this),"dmatest", &opts),s_spawn(s_bind(&ChipTest::memSpawn, this),"memtest", &opts),SC_JOIN}Note that the ChipTest spawned() method spawns the indi-vidual test spawned() methods using the SystemC fork-joinonstrut.
3.3 Regression TestingThe value of regression testing for �nding bugs is oftenoverlooked. Random testing, where input stimuli, test pa-rameters, and test senarios are generated pseudo-randomly(depending on the random seed), greatly improves the veri-�ation quality by generating interesting veri�ation senar-ios. Though the majority of regression failures were not realdesign bugs, lose to 10% of those failures an be desribedas either design limitations needed to be doumented or in-teresting, hard-to-imagine test senarios that had to be �xedin the design.
4. CO-VERIFICATION: BOOTING LINUXThe ability of the hip to boot Linux is the most im-portant funtional requirement. The software team startedthe debugging of the Linux kernel using the SimH behav-ioral standalone simulator. The total number of instrutionsneeded to run full SMP to the user mode prompt equals ap-proximately 16 million MIPS instrutions. The Linux debugproess was split into the following sequene of steps:1. Fast behavioral simulations in the SimH environment.It takes 50 seonds to boot Linux.2. Speed-optimized, mixed-mode, and liense-free Sys-temC simulations (behavioral CPU models, SystemCHLMs, and Verilated RTL). The total Linux boot timeis 3 hours and 27 minutes.3. Liense-free SystemC simulations (verilated RTL). TheLinux boot time is 14 hours and 17 minutes.4. Verilog RTL simulations using NCSIM. The Linux boottime is 28 hours.5. Verilog gate-level simulations using NCSIM. BootingLinux requires almost 100 hours.
5. VERIFICATION STATISTICSThe overall number of blok, subhip and hip-level teststotalled almost 20,000. Every nightly regression test suiteinluded approximately 5,000 randomly seleted tests (bothdireted and random tests). On average, only 20% of thenightly regression simulation runs require NCSIM lienses.The total number of ritial design bugs totaled lose to1,300. Table 1 shows the distribution of ritial bugs withtheir perentage of the total number of bugs found in HLMand RTL models of the ustom built bloks. As a result,more than 80% of all bugs were found in the HLM blok

Blok HLM RTL TotalL2 Cahe 304 (90%) 34 (10%) 338DMA Engine 217 (82%) 47 (18%) 264FSW Swith 158 (79%) 41 (21%) 199PCIe-PMI 159 (84%) 30 (16%) 189CHIP 3 (21%) 11 (79%) 14Table 1: HLM and RTL Bug Distributionmodels and only 20% in the orresponding RTL models. Thedistribution of bugs is reversed at the hip-level: almost 80%of the hip-level bugs were found in the RTL hip model. Ahigher perentage of bugs in the RTL hip model an be ex-plained by two reasons. Firstly, all blok and subhip-levelsimulations are performed on the same SystemC hip model,and, seondly, the RTL hip model ontains additional ir-uitry, suh as DFT logi, PLLs, and PHYs.
6. CONCLUSIONSA set of fast behavioral and yle-aurate models weredeveloped to enable the arhitetural exploration, perfor-mane analysis, and software debug in early stages of thedevelopment of the SiCortex ompute node arhiteture.Besides verifying the SOC design, it was vitally importantto demonstrate that the Linux operating system and de-vie drivers ould operate seamlessly on the hip before thetapeout. The SiCortex simulation strategy provided for ahigher level of ontrol over the simulation speed, auray,and overall veri�ation ost. The veri�ation strategy andtestbenh design inreased reusability of veri�ation ode.Open soure tools, suh as as Vregs, SystemPerl, and Ver-ilator, proved to be valuable produtivity tools in helpingthe veri�ation team to develop, simulate, and regress testsliense-free. As a result, engineers were able to run moretests and �nd more bugs sooner.
7. REFERENCES[1℄ M. Reilly, L. Stewart, J. Leonard, D. Gingold,�SiCortex Tehnial Summary�, 2006. (available athttp://www.siortex.om/prod_white.shtml)[2℄ A. Piziali, �Funtional Veri�ation CoverageMeasurement and Analysis�, Kluwer AademiPublishers, 2004.[3℄ R. Supnik, "Writing a Simulator for the SimH System",2006. (available at http://simh.trailing-edge.om)[4℄ W. Snyder, �Verilator and SystemPerl Environment�,NASCUG, 2004.[5℄ O. Petlin, A. Genusov, L. Wakeman, �Methodology andCode Reuse in the Veri�ation of TeleommuniationSOCs�, 13th IEEE ASIC/SOC Conf., pp. 187-191, 2000.[6℄ B. Stroustrup, �The C++ Programming Language�,Addison-Wesley Professional, 2000.[7℄ L. Singh, L. Druker, N. Khan, �Advaned Veri�ationTehniques�, Springer, 2005.[8℄ W. Snyder, �505 Registers or Bust�, Synopsys User's Group,SNUG Boston 2001.

