
Verilator: Fast, Free,
But for Me?

http://www.veripool.org/papers

Wilson Snyder
Cavium NetworksCavium Networks

wsnyder@wsnyder.org

Agenda

• Why Open Source Simulation?

• Introduction to Verilator

• Getting Started with VerilatorGetting Started with Verilator

• Verilator Futures

• Other Tools

• ConclusionConclusion

• Q & A

2 Verilator: Fast, Free, but for Me? wsnyder 2010-09

Where’s Open Source From?

• Generally, not from Hobbyists

• Every company has a pile of hackware,
ft i ffi i tl i ti th l tioften inefficiently reinventing the same solution
– Instead they contribute, borrow and improve

• Verilator was of this mode
– When written there’s was no “Application owns the– When written, there s was no Application owns the

main-loop” Verilog compiler

3 Verilator: Fast, Free, but for Me? wsnyder 2010-09

Why Write Open Source?

• Authoring open source is often
more cost effective than licensesmore cost effective than licenses
– Even if one person spends lots of time (I’m below 10%)

Contributions by others later benefit employer• Contributions by others later benefit employer
– Certainly more cost effective to share labor with others

Other authors wrote many features later needed– Other authors wrote many features later needed
by my employer

• Much higher documentation qualityMuch higher documentation quality
• Much higher test quality
• Learn great techniques from other companies

4 Verilator: Fast, Free, but for Me? wsnyder 2010-09

• Learn great techniques from other companies

Open Source Advantages (1)

• Financial
C t iff it d l t h t d– Cost – iff it does close to what you need

• Else, need a cost-benefit analysis
– Not worth rewriting rarely used commercial tools

– Open License – Required for some applications
• Example: NXP needed a solution they could provide to• Example: NXP needed a solution they could provide to

software developers, and couldn’t contact a license server
• Example: Running simulations on cloud machines

– Stronger negotiation position when buying
commercial tools

5 Verilator: Fast, Free, but for Me? wsnyder 2010-09

Open Source Advantages (2)

• Source Code Visibility
R i– Repurposing

• Have a similar problem, but need tweaks commercial people
are unlikely to want to do

– Visibility into everyone’s bugs, to see what to avoid
EDA i l h th i b d t b• EDA companies rarely share their bug databases

– Potentially quick bug turn-aroundy q g
• Minutes if you do it yourself!

6 Verilator: Fast, Free, but for Me? wsnyder 2010-09

Open Source Negatives

• Support – you’re the first level support person
Th ’ t l ill fi b– There’s no guarantees someone else will fix your bug

• But you could fix it – with old commercial tools, that’s often
not possible

– Some open source projects don’t take patches back
• Leads to local versions and hard upgrades
• Check “liveness” of a project before using their code• Check liveness of a project before using their code

– Few training resource available
• Quality – Varies – as with commercial toolsQuality Varies as with commercial tools

– Evaluate as with any other tool
• Features – Often less than commercial tools

7 Verilator: Fast, Free, but for Me? wsnyder 2010-09

– Never sign off with all eggs in any one simulator

Leverage Both

• In summary, from our experiences:
O S i d f 90% f i l ti– Open Source is good for 90% of simulations

– Commercial is good for 100% of simulations
but needed for only 10%but needed for only 10%

• Don’t pay for 9 times more licenses, use both!

• $$ would spend on simulator runtime
licenses instead goes to computes

10 i l ti d ll– ~ 10x more simulations per dollar

8 Verilator: Fast, Free, but for Me? wsnyder 2010-09

Agenda

• Why Open Source Simulation?

• Introduction to Verilator

• Getting Started with VerilatorGetting Started with Verilator

• Verilator Futures

• Other Tools

• ConclusionConclusion

• Q & A

9 Verilator: Fast, Free, but for Me? wsnyder 2010-09

History

• Verilator was born in 1994
V il th S th i L– Verilog was the new Synthesis Language

– C++ was the Test-bench Language
– So Paul Wasson synthesized Verilog into C++– So Paul Wasson synthesized Verilog into C++
– And popular open source was, well, GNU Emacs

Si t l t• Sixteen years later,
– Three major rewrites

Many many optimizations and language features– Many, many optimizations and language features
– Much community involvement
– Open source is proven

10 Verilator: Fast, Free, but for Me? wsnyder 2010-09

Ope sou ce s p o e
• Who foresaw we would all be using Linux?

Verilator User Base

11 Verilator: Fast, Free, but for Me? wsnyder 2010-09

All trademarks registered by respective owners.
Users based on correspondence; there is no official way to determine “users” since there’s no license!

Verilator is a Compiler

• Verilator compiles synthesizable Verilog into C++
– Matches synthesis rules, not simulation rules
– Time delays ignored (a <= #{n} b;)

O l t t t i l ti (d t i t t b)– Only two state simulation (and tri-state busses)
– Unknowns are randomized (better than Xs)

• Creates C++/SystemC wrapper

• Creates own internal interconnect
– Plays several tricks to get good fast code

12 Verilator: Fast, Free, but for Me? wsnyder 2010-09

Plays several tricks to get good, fast code

Example Translated to C++

• The top wrapper looks similar to the
top Verilog module

• Inputs and outputs map directly to bool, p p p y
uint32_t, uint64_t, or array of uint32_t's:

#include "verilated.h"

class Convert {
bool clk;

module Convert;
input clk
input [31:0] data;
output [31:0] out;

uint32_t data;
uint32_t out;

void eval();

output [31:0] out;

always @ (posedge clk)
out <= data;

endmodule

13 Verilator: Fast, Free, but for Me? wsnyder 2010-09

}
endmodule

Calling the model

• Application calls the Verilated class in a loop
– Verilator doesn’t make time pass!

• The key difference from most simulators

class Convert {
bool clk;
uint32_t data;
uint32 t out;

int main() {
Convert* top = new Convert();
while (!Verilated::gotFinish()) {

top->data = …; uint32_t out;

void eval();
}

top data …;
top->clk = !top->clk;

top->eval();

… = top->out();

time++; // Advance time…
}

14 Verilator: Fast, Free, but for Me? wsnyder 2010-09

}
top->final();

}

Verilator Optimizations

module x;
INVERT inv (a(clk) z(clk l));

Module Inlining,
inverter pushing

INVERT inv (.a(clk), .z(clk_l));
wire zero = 1’b0
always @ (posedge clk) begin

b <= in || zero;

if (~ clk & last_clk & 1) {

d = lookup_table[b & 255]; Table lookups
c <= b;
case (c[7:1])

7’h1: d <= 32’h12 ^ c[0];
// More logic

c = b;
b = in;
last clk = clk;

p

Constant
propagation

// More logic
endcase

end

last_clk = clk;
}

Code leveling
with no “previous values”

• End result is extremely fast Verilog simulation

stored for <=‘s!

15 Verilator: Fast, Free, but for Me? wsnyder 2010-09

End result is extremely fast Verilog simulation

Performance

• Booting Linux on MIPS SoC
N* SIM

Verilator
N -SIM

• Testbuilder-Based Unit Test

N*-SIM
V**

A*H*L Why so close?
8% in Verilog
92% in C Test Bench
Oh ll!Verilator

Icarus
• Motorolla Embedded CPU

Oh well!

N* SIM
CV*
V**

Icarus
32bit
64bit

16 Verilator: Fast, Free, but for Me? wsnyder 2010-09

Verilator
N*-SIM As in all benchmarks,

your mileage will vary

Put simply, is Verilator for Me?

• Design in VHDL:
(Patch wanted )(Patch wanted )

• Design in SystemVerilog, Need full compliance
ll d i ithbig SystemVerilog testbench: on smaller designs with

Verilog2001? Try
Icarus Verilog

• Design in SystemVerilog,
Verif/Testbench in C++,
Limited PLI:Limited PLI:

• Design in SystemVerilog, ?
17 Verilator: Fast, Free, but for Me? wsnyder 2010-09

testbench in Verilog: ?

Verilator and Commercial
Verilator Commercial
Synthesizable Verilog-2005 Mostly SystemVerilog-2005 y g
Some SystemVerilog-2009

y y g
compliant

C++ and DPI Interface VPI/DPI interface
Two-State, some tristates Four-State (0,1,X,Z)
Cycle accurate Timing accurate (thus required for

PLL, PHY and gate simulations)
Limited SVA assertions Full SVA assertions
Line and Block coverage Block, FSM, expression coverage
Waveforms GDB/DDD Waveforms source debuggerWaveforms, GDB/DDD Waveforms, source debugger
Faster simulations (1-5x)
Community support

Slower simulations
Excellent customer support

18 Verilator: Fast, Free, but for Me? wsnyder 2010-09

Free Not quite 

Agenda

• Why Open Source Simulation?

• Introduction to Verilator

• Getting Started with VerilatorGetting Started with Verilator

• Verilator Futures

• Other Tools

• ConclusionConclusion

• Q & A

19 Verilator: Fast, Free, but for Me? wsnyder 2010-09

Getting Started

• Download and install
Gl b ll RPM Th k RPM k !– Globally: RPMs - Thanks, RPM packagers!

– or Globally: Download, “make install”
– or Cad-tool-ish with multiple versions and env var– or Cad-tool-ish with multiple versions and env var

make ; setenv VERILATOR_ROOT `pwd`

Follow example in “verilator help”• Follow example in “verilator –help”

• Simple run to see warnings
verilator –lint-only –f input.vc top.v

• Create your own Makefile

20 Verilator: Fast, Free, but for Me? wsnyder 2010-09

Lint Warnings
wire [11:0] foo = in[11:0] + 3’b1;

%Warning-WIDTH: Operator ADD expects 12 bits on
the RHS, but CONST generates 3 bits
Use /*verilator lint off WIDTH*/Use / verilator lint_off WIDTH / …

• Just an advisory - can disableJust an advisory can disable

• Make edits so every vendor’s lint tool is happy
See “Ten IP Edits Paper”:– See Ten IP Edits Paper :
http://www.veripool.org/papers/TenIPEdits_SNUGBos07_paper.pdf

21 Verilator: Fast, Free, but for Me? wsnyder 2010-09

UNOPTFLAT
always @*

a[1] = ina[1] in
a[0] = a[1]

%Warning-UNOPTFLAT

• An always statement(s) will get activated twice
on a signal, not one bit change

S i f bl f V il t– Serious performance problem for Verilator
– Other simulators also are loosing a little performance

• Split into two always statements• Split into two always statements
• Rare - one of these for every 100k lines or so

W t d P t h t lit bit f
22 Verilator: Fast, Free, but for Me? wsnyder 2010-09

• Wanted: Patch to split bits up for you

Very Large Designs

• Verilator is optimized for midsized blocks

• Blocks are assumed to be assembled into
chips with C++/SystemC, not Verilog
– It flattens more than it would if its history was different
– Patch wanted: Keep hierarchy for specified files

• So, compile time can get large
– Just like Synthesis, you may need a lot of memory
– Verilator can split C output
– Use compile farm with distcc + ccache

With th il ti i i l i l t

23 Verilator: Fast, Free, but for Me? wsnyder 2010-09

– With these compile time is ~= commercial simulators

Mixing With Other Simulators

• Run Verilator --lint-only along with your normal lint
Y t t t ff th t l’ idth h k– You may want to turn off other tool’s width checks,
Verilator’s are generally less annoying

• Randomize Xs
– Finds far more reset bugs than X propagation
– We can provide PLI code for other simulators

• Use the DPI to connect to all your simulators
– Much faster than VPI $user calls

24 Verilator: Fast, Free, but for Me? wsnyder 2010-09

– DPI can’t examine the interconnect, though

Debugging Verilated code

• Sorry.

• Run with –debug
– Enables internal assertion checks
– Dumps the internal trees

• Make a standalone test regress example• Make a standalone test_regress example
– This will allow us to add it to the suite
– See the Verilator manpage

• File on Veripool.org bug tracking

25 Verilator: Fast, Free, but for Me? wsnyder 2010-09

Contributing Back

• Use Bug Reporting and Forums
• Try to submit a patch yourself

– Many problems take only a few hours to resolve
lf ft l ti th k i t tyourself; often less time than packaging up a test

case for an EDA company!
• Run oprofile and post your bottlenecksRun oprofile and post your bottlenecks

– Most optimizations came from “oh, it could do better”

Tell what changes you’d like to see• Tell what changes you d like to see
– We often have no idea what users find frustrating

26 Verilator: Fast, Free, but for Me? wsnyder 2010-09

• Advocate

Agenda

• Why Open Source Simulation?

• Introduction to Verilator

• Getting Started with VerilatorGetting Started with Verilator

• Verilator Futures

• Other Tools

• ConclusionConclusion

• Q & A

27 Verilator: Fast, Free, but for Me? wsnyder 2010-09

Future Language Support

• SystemVerilog Interfaces
P t h il bl t b i t t d– Patch available – to be integrated

• Structs Classes• Structs, Classes
– Patch wanted – some work started

• Support PLL and DLL models
– “real” typesreal types
– “time” and timescales
– New Event Loop

28 Verilator: Fast, Free, but for Me? wsnyder 2010-09

– Lots of patches wanted; good little projects!

Future Performance

• Avoid replicating large structures

• Eliminate duplicate logic
wire a = b|c;|
wire a2 = b|c;

• Optimize CachesOptimize Caches
– Most models are load/store limited
– On large designs, smaller code footprint with more

instructions executed would be faster!instructions executed would be faster!
TIP: Buy CPUs with the largest caches
you can get, they are generally well

th th i f ALL i l t

29 Verilator: Fast, Free, but for Me? wsnyder 2010-09

worth the premium for ALL simulators.

Future Performance

• Multithreaded execution & GPUs
– Multithreaded/multicore CPUs
– Commercial sims report up to 7x improvements

• It’s easier when you start from a lower point • It s easier when you start from a lower point 

– Hard to avoid communication bottlenecks
– GPUs – though not great at integer codeg g g
– Great PhD thesis

30 Verilator: Fast, Free, but for Me? wsnyder 2010-09

Agenda

• Why Open Source Simulation?

• Introduction to Verilator

• Getting Started with VerilatorGetting Started with Verilator

• Verilator Futures

• Other Tools

• ConclusionConclusion

• Q & A

31 Verilator: Fast, Free, but for Me? wsnyder 2010-09

Verilog-Mode for Emacs

• Thousands of users, including most IP houses
• Fewer lines of code to edit means fewer bugs• Fewer lines of code to edit means fewer bugs
• Indents code correctly, too
• Not a preprocessor,Not a preprocessor,

code is always “valid” Verilog
• Automatically injectable

i t ld d

/*AUTOWIRE*/
// Beginning of autos
wire [1:0] bus; // From a,b

into older code.
wire [1:0] bus; // From a,b
wire y; // From b
wire z; // From a
// End of automatics

…
/*AUTOWIRE*/

a a (/*AUTOINST*/);

a a (/*AUTOINST*/
// Outputs
.bus (bus[0]),

())

32 Verilator: Fast, Free, but for Me? wsnyder 2010-09

GNU Emacs (Verilog-Mode))

a a (/*AUTOINST*/);

GNU Emacs (Verilog-Mode))

.z (z));

Verilog-Perl Toolbox

• Code shared with Verilator
N l id ti l– Nearly identical preprocessor

– Superset of lexical analysis and parser
– Parses 95% of SystemVerilog 2009– Parses 95% of SystemVerilog 2009

• Vhier
– Print design hierarchy input files etcPrint design hierarchy, input files, etc

• Vppreproc
– Complete 2009 preprocessorComplete 2009 preprocessor

• Vrename
– Rename and xref signals

To From Filenames
“a new” “a” “MyMod.v”

33 Verilator: Fast, Free, but for Me? wsnyder 2010-09

g
across many files

a_new a MyMod.v
“b” “b” “MyMod.v”

Verilog-Perl: vpassert

• Preprocessor for messaging, SVA and coverage
l @* b ialways @* begin
if (...) begin

$ucover_clk(clock, label)

• vpassert expands this to:
reg temp;reg _temp;
label: cover property (@(posedge clock) _temp)
always @* begin

tempsig = 0;
if (...) begin

_tempsig = 1;

34 Verilator: Fast, Free, but for Me? wsnyder 2010-09

Voneline

• Hard to “grep” for instances in gate level netlists
N d i t t hit• Need consistent whitespace
– Newline only after each cell

Preserves // comments and defines– Preserves // comments and defines
• voneline is a simple filter to accomplish this

http://www veripool org/voneline– http://www.veripool.org/voneline

module mod;
input a;input a;
input b;
cell1 cell1 (.a(a), .b(b), .c(c), …);
cell2 cell2 (.x(x), .y(y), …);

35 Verilator: Fast, Free, but for Me? wsnyder 2010-09

endmodule

Dir::Project

• Run scripts from a checkout
Fi d th “ t” f h k t– Finds the “root” of a checkout

– Running “foo” in the shell will find “foo” program in the
checkoutcheckout

– No need to change PATH
– Users never “change” projects,

current directory controls all

36 Verilator: Fast, Free, but for Me? wsnyder 2010-09

CovVise – Coverage Database
– Uses distributed database, not files
– Tested to > 10 billion bin-inserts per dayp y

• Above most commercial tools!
– Tracks failing tests and low coverage bins too

Imports from Verilator coverage– Imports from Verilator coverage

37 Verilator: Fast, Free, but for Me? wsnyder 2010-09

Agenda

• Why Open Source Simulation?

• Introduction to Verilator

• Getting Started with VerilatorGetting Started with Verilator

• Verilator Futures

• Other Tools

• ConclusionConclusion

• Q & A

38 Verilator: Fast, Free, but for Me? wsnyder 2010-09

Conclusions

• Leverage Open Source AND Commercial
SimulatorsSimulators
– Open Source Simulators

• Easy to run on laptops or SW developer machines
R f t j i l t• Run as fast as major simulators

– Commercial Simulators
• Run analog models gate SDF delay models etc• Run analog models, gate SDF delay models, etc
• Reference for signoff

– $$ we would spend on 90% of$$ p %
simulator runtime licenses
goes instead to computes

• 10x the throughput!

39 Verilator: Fast, Free, but for Me? wsnyder 2010-09

Sources

• Open source design tools at
http://www veripool orghttp://www.veripool.org
– Downloads
– Bug Reporting
– User Forums
– News & Mailing Lists

These slides at– These slides at
http://www.veripool.org/papers/

• Many other tools as described on earlier slides
– More complete list in the online version of this

presentation

40 Verilator: Fast, Free, but for Me? wsnyder 2010-09

presentation

