
Verilator 4.008

http://www.veripool.org

2018-12-01

1

Verilator 4.008 CONTENTS

Contents

1 NAME 2

2 SYNOPSIS 2

3 DESCRIPTION 2

4 ARGUMENT SUMMARY 2

5 VERILATION ARGUMENTS 6

6 RUNTIME ARGUMENTS 24

7 EXAMPLE C++ EXECUTION 24

8 EXAMPLE SYSTEMC EXECUTION 26

9 BENCHMARKING & OPTIMIZATION 28

10 FILES 29

11 ENVIRONMENT 30

12 CONNECTING TO C++ 32

13 CONNECTING TO SYSTEMC 33

14 DIRECT PROGRAMMING INTERFACE (DPI) 33

15 VERIFICATION PROCEDURAL INTERFACE (VPI) 37

16 CROSS COMPILATION 38

17 MULTITHREADING 39

1

Verilator 4.008 CONTENTS

18 CONFIGURATION FILES 41

19 LANGUAGE STANDARD SUPPORT 42

20 LANGUAGE EXTENSIONS 44

21 LANGUAGE LIMITATIONS 50

22 ERRORS AND WARNINGS 57

23 FAQ/FREQUENTLY ASKED QUESTIONS 70

24 BUGS 76

25 HISTORY 77

26 AUTHORS 78

27 CONTRIBUTORS 78

28 DISTRIBUTION 79

29 SEE ALSO 80

2

Verilator 4.008 4 ARGUMENT SUMMARY

1 NAME

Verilator - Convert Verilog code to C++/SystemC

2 SYNOPSIS

verilator --help

verilator --version

verilator --cc [options] [source_files.v]... [opt_c_files.cpp/c/cc/a/o/so]

verilator --sc [options] [source_files.v]... [opt_c_files.cpp/c/cc/a/o/so]

verilator --lint-only -Wall [source_files.v]...

3 DESCRIPTION

Verilator converts synthesizable (generally not behavioral) Verilog code, plus some
Synthesis, SystemVerilog and a small subset of Verilog AMS into C++ or SystemC
code. It is not a complete simulator, but a compiler.

Verilator is invoked with parameters similar to GCC, Cadence Verilog-XL/NC-Verilog,
or Synopsys's VCS. It reads the speci�ed Verilog code, lints it, and optionally adds
coverage and waveform tracing code. For C++ and SystemC formats, it outputs .cpp
and .h �les.

The �les created by Verilator are then compiled with C++. The user writes a little
C++ wrapper �le, which instantiates the top level module, and passes this �lename
on the command line. These C �les are compiled in C++, and linked with the
Verilated �les.

The resulting executable will perform the actual simulation.

To get started, jump down to "EXAMPLE C++ EXECUTION".

4 ARGUMENT SUMMARY

This is a short summary of the arguments to Verilator itself. See the detailed de-
scriptions in �5 for more information.

{file.v} Verilog package, module and top module filenames

{file.c/cc/cpp} Optional C++ files to compile in

{file.a/o/so} Optional C++ files to link in

3

Verilator 4.008 4 ARGUMENT SUMMARY

+1364-1995ext+<ext> Use Verilog 1995 with file extension <ext>

+1364-2001ext+<ext> Use Verilog 2001 with file extension <ext>

+1364-2005ext+<ext> Use Verilog 2005 with file extension <ext>

+1800-2005ext+<ext> Use SystemVerilog 2005 with file extension <ext>

+1800-2009ext+<ext> Use SystemVerilog 2009 with file extension <ext>

+1800-2012ext+<ext> Use SystemVerilog 2012 with file extension <ext>

+1800-2017ext+<ext> Use SystemVerilog 2017 with file extension <ext>

--assert Enable all assertions

--autoflush Flush streams after all $displays

--bbox-sys Blackbox unknown $system calls

--bbox-unsup Blackbox unsupported language features

--bin <filename> Override Verilator binary

-CFLAGS <flags> C++ Compiler flags for makefile

--cc Create C++ output

--cdc Clock domain crossing analysis

--clk <signal-name> Mark specified signal as clock

--compiler <compiler-name> Tune for specified C++ compiler

--converge-limit <loops> Tune convergence settle time

--coverage Enable all coverage

--coverage-line Enable line coverage

--coverage-toggle Enable toggle coverage

--coverage-user Enable SVL user coverage

--coverage-underscore Enable coverage of _signals

-D<var>[=<value>] Set preprocessor define

--debug Enable debugging

--debug-check Enable debugging assertions

--no-debug-leak Disable leaking memory in --debug mode

--debugi <level> Enable debugging at a specified level

--debugi-<srcfile> <level> Enable debugging a source file at a level

--default-language <lang> Default language to parse

+define+<var>=<value> Set preprocessor define

--dump-defines Show preprocessor defines with -E

--dump-tree Enable dumping .tree files

--dump-treei <level> Enable dumping .tree files at a level

--dump-treei-<srcfile> <level> Enable dumping .tree file at a source file at a level

-E Preprocess, but do not compile

--error-limit <value> Abort after this number of errors

--exe Link to create executable

-F <file> Parse options from a file, relatively

-f <file> Parse options from a file

-FI <file> Force include of a file

-G<name>=<value> Overwrite toplevel parameter

--gdb Run Verilator under GDB interactively

--gdbbt Run Verilator under GDB for backtrace

--getenv <var> Get environment variable with defaults

--help Display this help

-I<dir> Directory to search for includes

--gate-stmts <value> Tune gate optimizer depth

--if-depth <value> Tune IFDEPTH warning

+incdir+<dir> Directory to search for includes

4

Verilator 4.008 4 ARGUMENT SUMMARY

--inhibit-sim Create function to turn off sim

--inline-mult <value> Tune module inlining

-LDFLAGS <flags> Linker pre-object flags for makefile

-LDLIBS <flags> Linker library flags for makefile

--l2-name <value> Verilog scope name of the top module

--language <lang> Default language standard to parse

+libext+<ext>+[ext]... Extensions for finding modules

--lint-only Lint, but do not make output

--MMD Create .d dependency files

--MP Create phony dependency targets

--Mdir <directory> Name of output object directory

--mod-prefix <topname> Name to prepend to lower classes

--no-clk <signal-name> Prevent marking specified signal as clock

--no-decoration Disable comments and symbol decorations

--no-pins64 Don't use vluint64_t's for 33-64 bit sigs

--no-skip-identical Disable skipping identical output

+notimingchecks Ignored

-O0 Disable optimizations

-O3 High performance optimizations

-O<optimization-letter> Selectable optimizations

-o <executable> Name of final executable

--no-order-clock-delay Disable ordering clock enable assignments

--output-split <bytes> Split .cpp files into pieces

--output-split-cfuncs <statements> Split .cpp functions

--output-split-ctrace <statements> Split tracing functions

-P Disable line numbers and blanks with -E

--pins-bv <bits> Specify types for top level ports

--pins-sc-uint Specify types for top level ports

--pins-sc-biguint Specify types for top level ports

--pins-uint8 Specify types for top level ports

--pipe-filter <command> Filter all input through a script

--pp-comments Show preprocessor comments with -E

--prefix <topname> Name of top level class

--prof-cfuncs Name functions for profiling

--prof-threads Enable generating gantt chart data for threads

--private Debugging; see docs

--public Debugging; see docs

-pvalue+<name>=<value> Overwrite toplevel parameter

--relative-includes Resolve includes relative to current file

--no-relative-cfuncs Disallow 'this->' in generated functions

--report-unoptflat Extra diagnostics for UNOPTFLAT

--savable Enable model save-restore

--sc Create SystemC output

--stats Create statistics file

--stats-vars Provide statistics on variables

-sv Enable SystemVerilog parsing

+systemverilogext+<ext> Synonym for +1800-2017ext+<ext>

--threads <threads> Enable multithreading

--threads-dpi <mode> Enable multithreaded DPI

--threads-max-mtasks <mtasks> Tune maximum mtask partitioning

5

Verilator 4.008 4 ARGUMENT SUMMARY

--top-module <topname> Name of top level input module

--trace Enable waveform creation

--trace-fst Enable FST waveform creation

--trace-lxt2 Enable LXT2 waveform creation

--trace-depth <levels> Depth of tracing

--trace-max-array <depth> Maximum bit width for tracing

--trace-max-width <width> Maximum array depth for tracing

--trace-params Enable tracing parameters

--trace-structs Enable tracing structure names

--trace-underscore Enable tracing of _signals

-U<var> Undefine preprocessor define

--unroll-count <loops> Tune maximum loop iterations

--unroll-stmts <stmts> Tune maximum loop body size

--unused-regexp <regexp> Tune UNUSED lint signals

-V Verbose version and config

-v <filename> Verilog library

+verilog1995ext+<ext> Synonym for +1364-1995ext+<ext>

+verilog2001ext+<ext> Synonym for +1364-2001ext+<ext>

--version Displays program version and exits

--vpi Enable VPI compiles

-Wall Enable all style warnings

-Werror-<message> Convert warnings to errors

-Wfuture-<message> Disable unknown message warnings

-Wno-<message> Disable warning

-Wno-lint Disable all lint warnings

-Wno-style Disable all style warnings

-Wno-fatal Disable fatal exit on warnings

--x-assign <mode> Assign non-initial Xs to this value

--x-initial <mode> Assign initial Xs to this value

--x-initial-edge Enable initial X->0 and X->1 edge triggers

--xml-only Create XML parser output

-y <dir> Directory to search for modules

This is a short summary of the arguments to run-time Verilated arguments. detailed
descriptions in �6 for more information.

+verilator+debug Enable debugging

+verilator+debugi+<value> Enable debugging at a level

+verilator+help Display help

+verilator+prof+threads+file+I<filename> Set profile filename

+verilator+prof+threads+start+I<value> Set profile starting point

+verilator+prof+threads+window+I<value> Set profile duration

+verilator+rand+reset+<value> Set random reset technique

+verilator+V Verbose version and config

+verilator+version Show version and exit

6

Verilator 4.008 5 VERILATION ARGUMENTS

5 VERILATION ARGUMENTS

The following are the arguments that may be passed to Verilator itself.

{�le.v}

Speci�es the Verilog �le containing the top module to be Verilated.

{�le.c/.cc/.cpp/.cxx}

Speci�es optional C++ �les to be linked in with the Verilog code. If any
C++ �les are speci�ed in this way, Verilator will include a make rule that
generates a module executable. Without any C++ �les, Verilator will stop at
the module__ALL.a library, and presume you'll continue linking with make
rules you write yourself. See also the -CFLAGS option.

{�le.a/.o/.so}

Speci�es optional object or library �les to be linked in with the Verilog code,
as a shorthand for -LDFLAGS "<�le>". If any �les are speci�ed in this way,
Verilator will include a make rule that uses these �les when linking the module

executable. This generally is only useful when used with the --exe option.

+1364-1995ext+ext

+1364-2001ext+ext

+1364-2005ext+ext

+1800-2005ext+ext

+1800-2009ext+ext

+1800-2012ext+ext

+1800-2017ext+ext

Speci�es the language standard to be used with a speci�c �lename extension,
ext.

For compatibility with other simulators, see also the synonyms +verilog1995ext+ext,
+verilog2001ext+ext, and +systemverilogext+ext.

For any source �le, the language speci�ed by these options takes precedence over
any language speci�ed by the --default-language or --language options.

These options take e�ect in the order they are encountered. Thus the following
would use Verilog 1995 for a.v and Verilog 2001 for b.v.

verilator ... +1364-1995ext+v a.v +1364-2001ext+v b.v

These �ags are only recommended for legacy mixed language designs, as the
preferable option is to edit the code to repair new keywords, or add appropriate
`begin_keywords.

Note `begin_keywords is a SystemVerilog construct, which speci�es only which
the set of keywords is to be recognized. Whatever set is chosen, the semantics
will be those of SystemVerilog. By contrast +1364-1995ext+ etc. specify both
the syntax and semantics to be used.

7

Verilator 4.008 5 VERILATION ARGUMENTS

--assert

Enable all assertions.

--auto�ush

After every $display or $fdisplay, �ush the output stream. This ensures that
messages will appear immediately but may reduce performance; for best per-
formance call "�ush(stdout)" occasionally in the main C loop. Defaults o�,
which will bu�er output as provided by the normal C stdio calls.

--bbox-sys

Black box any unknown $system task or function calls. System tasks will be
simply NOPed, and system functions will be replaced by unsized zero. Argu-
ments to such functions will be parsed, but not otherwise checked. This prevents
errors when linting in the presence of company speci�c PLI calls.

--bbox-unsup

Black box some unsupported language features, currently UDP tables, the cmos
and tran gate primitives, deassign statements, and mixed edge errors. This
may enable linting the rest of the design even when unsupported constructs are
present.

--bin �lename

Rarely needed. Override the default �lename for Verilator itself. When a de-
pendency (.d) �le is created, this �lename will become a source dependency,
such that a change in this binary will have make rebuild the output �les.

-CFLAGS �ags

Add speci�ed C compiler �ag to the generated make�les. For multiple �ags
either pass them as a single argument with space separators quoted in the
shell (-CFLAGS "-a -b"), or use multiple -CFLAGS arguments (-CFLAGS -a

-CFLAGS -b).

When make is run on the generated make�le these will be passed to the C++
compiler (gcc/g++/msvc++).

--cc

Speci�es C++ without SystemC output mode; see also --sc.

--cdc

Experimental. Perform some clock domain crossing checks and issue related
warnings (CDCRSTLOGIC) and then exit; if warnings other than CDC warn-
ings are needed make a second run with --lint-only. Additional warning infor-
mation is also written to the �le {pre�x}__cdc.txt.

Currently only checks some items that other CDC tools missed; if you have
interest in adding more traditional CDC checks, please contact the authors.

--clk signal-name

Sometimes it is quite di�cult for Verilator to distinguish clock signals from
other data signals. Occasionally the clock signals can end up in the checking
list of signals which determines if further evaluation is needed. This will heavily
degrade the performance of a Verilated model.

8

Verilator 4.008 5 VERILATION ARGUMENTS

With --clk <signal-name>, user can speci�ed root clock into the model, then
Verilator will mark the signal as clocker and propagate the clocker attribute
automatically to other signals derived from that. In this way, Verilator will try
to avoid taking the clocker signal into checking list.

Note signal-name is speci�ed by the RTL hierarchy path. For example, v.foo.bar.
If the signal is the input to top-module, the directly the signal name. If you
�nd it di�cult to �nd the exact name, try to use /*verilator clocker*/ in
RTL �le to mark the signal directly.

If clock signals are assigned to vectors and then later used individually, Verilator
will attempt to decompose the vector and connect the single-bit clock signals
directly. This should be transparent to the user.

--compiler compiler-name

Enables tunings and workarounds for the speci�ed C++ compiler.

clang

Tune for clang. This may reduce execution speed as it enables several
workarounds to avoid silly hardcoded limits in clang. This includes break-
ing deep structures as for msvc as described below.

gcc

Tune for GNU C++, although generated code should work on almost any
compliant C++ compiler. Currently the default.

msvc

Tune for Microsoft Visual C++. This may reduce execution speed as it
enables several workarounds to avoid silly hardcoded limits in MSVC++.
This includes breaking deeply nested parenthesized expressions into sub-
expressions to avoid error C1009, and breaking deep blocks into functions
to avoid error C1061.

--converge-limit loops

Rarely needed. Speci�es the maximum number of runtime iterations before
creating a model failed to converge error. Defaults to 100.

--coverage

Enables all forms of coverage, alias for "--coverage-line --coverage-toggle --
coverage-user".

--coverage-line

Speci�es basic block line coverage analysis code should be inserted.

Coverage analysis adds statements at each code �ow change point, which are
the branches of IF and CASE statements, a super-set of normal Verilog Line
Coverage. At each such branch a unique counter is incremented. At the end of
a test, the counters along with the �lename and line number corresponding to
each counter are written into logs/coverage.dat.

Verilator automatically disables coverage of branches that have a $stop in them,
as it is assumed $stop branches contain an error check that should not occur.
A /*verilator coverage_block_o�*/ comment will perform a similar function
on any code in that block or below, or /*verilator coverage_on/coverage_o�*/
will disable coverage around lines of code.

9

Verilator 4.008 5 VERILATION ARGUMENTS

Note Verilator may over-count combinatorial (non-clocked) blocks when those
blocks receive signals which have had the UNOPTFLAT warning disabled; for
most accurate results do not disable this warning when using coverage.

--coverage-toggle

Speci�es signal toggle coverage analysis code should be inserted.

Every bit of every signal in a module has a counter inserted. The counter will
increment on every edge change of the corresponding bit.

Signals that are part of tasks or begin/end blocks are considered local variables
and are not covered. Signals that begin with underscores, are integers, or are
very wide (>256 bits total storage across all dimensions) are also not covered.

Hierarchy is compressed, such that if a module is instantiated multiple times,
coverage will be summed for that bit across ALL instantiations of that module
with the same parameter set. A module instantiated with di�erent parameter
values is considered a di�erent module, and will get counted separately.

Verilator makes a minimally-intelligent decision about what clock domain the
signal goes to, and only looks for edges in that clock domain. This means that
edges may be ignored if it is known that the edge could never be seen by the
receiving logic. This algorithm may improve in the future. The net result is
coverage may be lower than what would be seen by looking at traces, but the
coverage is a more accurate representation of the quality of stimulus into the
design.

There may be edges counted near time zero while the model stabilizes. It's a
good practice to zero all coverage just before releasing reset to prevent counting
such behavior.

A /*verilator coverage_o�/on */ comment pair can be used around signals that
do not need toggle analysis, such as RAMs and register �les.

--coverage-underscore

Enable coverage of signals that start with an underscore. Normally, these signals
are not covered. See also --trace-underscore.

--coverage-user

Enables user inserted functional coverage. Currently, all functional coverage
points are speci�ed using SVA which must be separately enabled with --assert.

For example, the following statement will add a coverage point, with the com-
ment "DefaultClock":

DefaultClock: cover property (@(posedge clk) cyc==3);

-Dvar=value

De�nes the given preprocessor symbol, without allowing. Similar to +de�ne;
+de�ne is fairly standard across Verilog tools while -D is an alias for GCC
compatibility.

--debug

Select the debug built image of Verilator (if available), and enable more internal
assertions (equivalent to --debug-check), debugging messages (equivalent to

10

Verilator 4.008 5 VERILATION ARGUMENTS

--debugi 4), and intermediate form dump �les (equivalent to --dump-treei

3).

--debug-check

Rarely needed. Enable internal debugging assertion checks, without changing
debug verbosity. Enabled automatically when --debug speci�ed.

--no-debug-leak

In --debug mode, by default Verilator intentionally leaks AstNode's instead of
freeing them, so that each node pointer is unique in the resulting tree �les and
dot �les.

This option disables the leak. This may avoid out-of-memory errors when Ver-
ilating large models in --debug mode.

Outside of --debug mode, AstNode's should never be leaked and this option has
no e�ect.

--debugi level

--debugi-src�le level

Rarely needed - for developer use. Set internal debugging level globally to
the speci�ed debug level (1-10) or set the speci�ed Verilator source �le to the
speci�ed level (e.g. --debugi-V3Width 9). Higher levels produce more detailed
messages.

--default-language value

Select the language to be used by default when �rst processing each Verilog �le.
The language value must be "1364-1995", "1364-2001", "1364-2005", "1800-
2005", "1800-2009", "1800-2012" or "1800-2017".

Any language associated with a particular �le extension (see the various +langext+
options) will be used in preference to the language speci�ed by --default-language.

The --default-language �ag is only recommended for legacy code using the same
language in all source �les, as the preferable option is to edit the code to re-
pair new keywords, or add appropriate `begin_keywords. For legacy mixed
language designs, the various +langext+ options should be used.

If no language is speci�ed, either by this �ag or +langext+ options, then the
latest SystemVerilog language (IEEE 1800-2017) is used.

+de�ne+var=value

+de�ne+var=value+var2=value2...

De�nes the given preprocessor symbol, or multiple symbols if separated by
plusses. Similar to -D; +de�ne is fairly standard across Verilog tools while -D
is an alias for GCC compatibility.

--dump-de�nes

With -E, suppress normal output, and instead print a list of all de�nes existing
at the end of pre-processing the input �les. Similar to GCC "-dM" option.
This also gives you a way of �nding out what is prede�ned in Verilator using
the command:

11

Verilator 4.008 5 VERILATION ARGUMENTS

touch foo.v ; verilator -E --dump-defines foo.v

--dump-tree

Rarely needed. Enable writing .tree debug �les with dumping level 3, which
dumps the standard critical stages. For details on the format see the Verilator
Internals manual. --dump-tree is enabled automatically with --debug, so "--
debug --no-dump-tree" may be useful if the dump �les are large and not desired.

--dump-treei level

--dump-treei-src�le level

Rarely needed - for developer use. Set internal tree dumping level globally to a
speci�c dumping level or set the speci�ed Verilator source �le to the speci�ed
tree dumping level (e.g. --dump-treei-V3Order 9). Level 0 disbles dumps
and is equivalent to "--no-dump-tree". Level 9 enables dumping of every stage.

-E

Preprocess the source code, but do not compile, as with 'gcc -E'. Output is
written to standard out. Beware of enabling debugging messages, as they will
also go to standard out.

--error-limit value

After this number of errors or warnings are encountered, exit. Defaults to 50.

--exe

Generate an executable. You will also need to pass additional .cpp �les on the
command line that implement the main loop for your simulation.

-F �le

Read the speci�ed �le, and act as if all text inside it was speci�ed as command
line parameters. Any relative paths are relative to the directory containing the
speci�ed �le. See also -f. Note -F is fairly standard across Verilog tools.

-f �le

Read the speci�ed �le, and act as if all text inside it was speci�ed as command
line parameters. Any relative paths are relative to the current directory. See
also -F. Note -f is fairly standard across Verilog tools.

The �le may contain // comments which are ignored to the end of the line.
Any $VAR, $(VAR), or ${VAR} will be replaced with the speci�ed environment
variable.

-FI �le

Force include of the speci�ed C++ header �le. All generated C++ �les will
insert a #include of the speci�ed �le before any other includes. The speci�ed �le
might be used to contain de�ne prototypes of custom VL_VPRINTF functions,
and may need to include verilatedos.h as this �le is included before any other
standard includes.

-Gname=value

Overwrites the given parameter of the toplevel module. The value is limited to
basic data literals:

12

Verilator 4.008 5 VERILATION ARGUMENTS

Verilog integer literals

The standard verilog integer literals are supported, so values like 32'h8,
2'b00, 4 etc. are allowed. Care must be taken that the single quote (I') is
properly escaped in an interactive shell, e.g., as -GWIDTH=8\'hx.

C integer literals

It is also possible to use C integer notation, including hexadecimal (0x..),
octal (0..) or binary (0b..) notation.

Double literals

Double literals must contain a dot (.) and/or an exponent (e).

Strings

String must in double quotes (""). On the command line it is required to
escape them properly, e.g. as -GSTR="\"My String\"" or -GSTR='"My
String"'.

--gate-stmts value

Rarely needed. Set the maximum number of statements that may be present
in an equation for the gate substitution optimization to inline that equation.

--gdb

Run Verilator underneath an interactive GDB (or VERILATOR_GDB envi-
ronment variable value) session. See also --gdbbt.

--gdbbt

If --debug is speci�ed, run Verilator underneath a GDB process and print a
backtrace on exit, then exit GDB immediately. Without --debug or if GDB
doesn't seem to work, this �ag is ignored. Intended for easy creation of back-
traces by users; otherwise see the --gdb �ag.

--getenv variable

If the variable is declared in the environment, print it and exit immediately.
Otherwise, if it's built into Verilator (e.g. VERILATOR_ROOT), print that
and exit immediately. Otherwise, print a newline and exit immediately. This
can be useful in make�les. See also -V, and the various *.mk �les.

--help

Displays this message and program version and exits.

-Idir

See -y.

--if-depth value

Rarely needed. Set the depth at which the IFDEPTH warning will �re, defaults
to 0 which disables this warning.

+incdir+dir

See -y.

13

Verilator 4.008 5 VERILATION ARGUMENTS

--inhibit-sim

Rarely needed. Create a "inhibitSim(bool)" function to enable and disable
evaluation. This allows an upper level testbench to disable modules that are
not important in a given simulation, without needing to recompile or change
the SystemC modules instantiated.

--inline-mult value

Tune the inlining of modules. The default value of 2000 speci�es that up to
2000 new operations may be added to the model by inlining, if more than this
number of operations would result, the module is not inlined. Larger values,
or a value <= 1 will inline everything, will lead to longer compile times, but
potentially faster runtimes. This setting is ignored for very small modules; they
will always be inlined, if allowed.

-LDFLAGS �ags

Add speci�ed C linker �ags to the generated make�les. For multiple �ags
either pass them as a single argument with space separators quoted in the
shell (-LDFLAGS "-a -b"), or use multiple -LDFLAGS arguments (-LDFLAGS
-a -LDFLAGS -b).

When make is run on the generated make�le these will be passed to the C++
linker (ld) *after* the primary �le being linked. This �ag is called -LDFLAGS
as that's the traditional name in simulators; it's would have been better called
LDLIBS as that's the Make�le variable it controls. (In Make, LDFLAGS is
before the �rst object, LDLIBS after. -L libraries need to be in the Make
variable LDLIBS, not LDFLAGS.)

--l2-name value

Instead of using the module name when showing Verilog scope, use the name
provided. This allows simplifying some Verilator-embedded modeling method-
ologies. Default is an l2-name matching the top module. The default before
3.884 was "--l2-name v"

For example, the program "module t; initial $display("%m"); endmodule" will
show by default "t". With "--l2-name v" it will print "v".

--language value

A synonym for --default-language, for compatibility with other tools and
earlier versions of Verilator.

+libext+ext+ext...

Specify the extensions that should be used for �nding modules. If for example
module x is referenced, look in x.ext. Note +libext+ is fairly standard across
Verilog tools. Defaults to .v and .sv.

--lint-only

Check the �les for lint violations only, do not create any other output.

You may also want the -Wall option to enable messages that are considered
stylistic and not enabled by default.

If the design is not to be completely Verilated see also the --bbox-sys and --
bbox-unsup options.

14

Verilator 4.008 5 VERILATION ARGUMENTS

--MMD

Enable creation of .d dependency �les, used for make dependency detection,
similar to gcc -MMD option. On by default, use --no-MMD to disable.

--MP

When creating .d dependency �les with --MMD, make phony targets. Similar
to gcc -MP option.

--Mdir directory

Speci�es the name of the Make object directory. All generated �les will be
placed in this directory. If not speci�ed, "obj_dir" is used. The directory is
created if it does not exist and the parent directories exist; otherwise manually
create the Mdir before calling Verilator.

--mod-pre�x topname

Speci�es the name to prepend to all lower level classes. Defaults to the same
as --pre�x.

--no-clk signal-name

Prevent the speci�ed signal from being marked as clock. See --clk.

--no-decoration

When creating output Verilated code, minimize comments, whitespace, symbol
names and other decorative items, at the cost of greatly reduced readability.
This may assist C++ compile times. This will not typically change the ultimate
model's performance, but may in some cases.

--no-pins64

Backward compatible alias for "--pins-bv 33".

--no-relative-cfuncs

Disable 'this->' references in generated functions, and instead Verilator will gen-
erate absolute references starting from 'vlTOPp->'. This prevents V3Combine
from merging functions from multiple instances of the same module, so it can
grow the instruction stream.

This is a work around for old compilers. Don't set this if your C++ com-
piler supports __restrict__ properly, as GCC 4.5.x and newer do. For older
compilers, test if this switch gives you better performance or not.

Compilers which don't honor __restrict__ will suspect that 'this->' references
and 'vlTOPp->' references may alias, and may write slow code with extra loads
and stores to handle the (imaginary) aliasing. Using only 'vlTOPp->' references
allows these old compilers to produce tight code.

--no-skip-identical

Rarely needed. Disables skipping execution of Verilator if all source �les are
identical, and all output �les exist with newer dates.

+notimingchecks

Ignored for compatibility with other simulators.

15

Verilator 4.008 5 VERILATION ARGUMENTS

-O0

Disables optimization of the model.

-O3

Enables slow optimizations for the code Verilator itself generates (as opposed to
"-CFLAGS -O3" which e�ects the C compiler's optimization. -O3 may reduce
simulation runtimes at the cost of compile time. This currently sets --inline-
mult -1.

-Ooptimization-letter

Rarely needed. Enables or disables a speci�c optimizations, with the opti-
mization selected based on the letter passed. A lowercase letter disables an
optimization, an upper case letter enables it. This is intended for debugging
use only; see the source code for version-dependent mappings of optimizations
to -O letters.

-o executable

Specify the name for the �nal executable built if using --exe. Defaults to the
--pre�x if not speci�ed.

--no-order-clock-delay

Rarely needed. Disables a bug �x for ordering of clock enables with delayed
assignments. This �ag should only be used when suggested by the developers.

--output-split bytes

Enables splitting the output .cpp �les into multiple outputs. When a C++ �le
exceeds the speci�ed number of operations, a new �le will be created at the next
function boundary. In addition, any slow routines will be placed into __Slow
�les. This accelerates compilation by as optimization can be disabled on the
slow routines, and the remaining �les can be compiled on parallel machines.
Using --output-split should have only a trivial impact on performance. With
GCC 3.3 on a 2GHz Opteron, --output-split 20000 will result in splitting into
approximately one-minute-compile chunks.

--output-split-cfuncs statements

Enables splitting functions in the output .cpp �les into multiple functions.
When a generated function exceeds the speci�ed number of operations, a new
function will be created. With --output-split, this will enable GCC to com-
pile faster, at a small loss in performance that gets worse with decreasing split
values. Note that this option is stronger than --output-split in the sense that
--output-split will not split inside a function.

--output-split-ctrace statements

Enables splitting trace functions in the output .cpp �les into multiple functions.
Defaults to same setting as --output-split-cfuncs.

-P

With -E, disable generation of `line markers and blank lines, similar to GCC -P
�ag.

16

Verilator 4.008 5 VERILATION ARGUMENTS

--pins64

Backward compatible alias for "--pins-bv 65". Note that's a 65, not a 64.

--pins-bv width

Speci�es SystemC inputs/outputs of greater than or equal to width bits wide
should use sc_bv's instead of uint32/vluint64_t's. The default is "--pins-bv
65", and the value must be less than or equal to 65. Versions before Verilator
3.671 defaulted to "--pins-bv 33". The more sc_bv is used, the worse for per-
formance. Use the "/*verilator sc_bv*/" attribute to select speci�c ports to be
sc_bv.

--pins-sc-uint

Speci�es SystemC inputs/outputs of greater than 2 bits wide should use sc_uint
between 2 and 64. When combined with the "--pins-sc-biguint" combination,
it results in sc_uint being used between 2 and 64 and sc_biguint being used
between 65 and 512.

--pins-sc-biguint

Speci�es SystemC inputs/outputs of greater than 65 bits wide should use sc_biguint
between 65 and 512, and sc_bv from 513 upwards. When combined with the
"--pins-sc-uint" combination, it results in sc_uint being used between 2 and 64
and sc_biguint being used between 65 and 512.

--pins-uint8

Speci�es SystemC inputs/outputs that are smaller than the --pins-bv setting
and 8 bits or less should use uint8_t instead of uint32_t. Likewise pins of
width 9-16 will use uint16_t instead of uint32_t.

--pipe-�lter command

Rarely needed and experimental. Verilator will spawn the speci�ed command
as a subprocess pipe, to allow the command to perform custom edits on the
Verilog code before it reaches Verilator.

Before reading each Verilog �le, Verilator will pass the �le name to the sub-
process' stdin with 'read_verilog "<�lename>"'. The �lter may then read the
�le and perform any �ltering it desires, and feeds the new �le contents back
to Verilator on stdout with 'Content-Length'. Output to stderr from the �lter
feeds through to Verilator's stdout and if the �lter exits with non-zero status
Verilator terminates. See the t/t_pipe_�lter test for an example.

To debug the output of the �lter, try using the -E option to see preprocessed
output.

--pp-comments

With -E, show comments in preprocessor output.

--pre�x topname

Speci�es the name of the top level class and make�le. Defaults to V prepended
to the name of the --top-module switch, or V prepended to the �rst Verilog
�lename passed on the command line.

17

Verilator 4.008 5 VERILATION ARGUMENTS

--prof-cfuncs

Modify the created C++ functions to support pro�ling. The functions will be
minimized to contain one "basic" statement, generally a single always block
or wire statement. (Note this will slow down the executable by �5%.) Fur-
thermore, the function name will be su�xed with the basename of the Verilog
module and line number the statement came from. This allows gprof or opro�le
reports to be correlated with the original Verilog source statements. See also
verilator_profcfunc.

--prof-threads

Enable gantt chart data collection for threaded builds.

Verilator will record the start and end time of each macro-task across a number
of calls to eval. (What is a macro-task? See the Verilator internals document.)

When pro�ling is enabled, the runtime will emit a blurb of pro�ling data in non-
human-friendly form. The verilator_gantt script will transform this into a
nicer visual format and produce some related statistics.

--private

Opposite of --public. Is the default; this option exists for backwards compati-
bility.

--public

This is only for historical debug use. Using it may result in mis-simulation of
generated clocks.

Declares all signals and modules public. This will turn o� signal optimizations
as if all signals had a /*verilator public*/ comments and inlining. This will also
turn o� inlining as if all modules had a /*verilator public_module*/, unless
the module speci�cally enabled it with /*verilator inline_module*/.

-pvalue+name=value

Overwrites the given parameter(s) of the toplevel module. See -G for a detailed
description.

--relative-includes

When a �le references an include �le, resolve the �lename relative to the path
of the referencing �le, instead of relative to the current directory.

--report-unopt�at

Extra diagnostics for UNOPTFLAT warnings. This includes for each loop, the
10 widest variables in the loop, and the 10 most fanned out variables in the
loop. These are candidates for splitting into multiple variables to break the
loop.

In addition produces a GraphViz DOT �le of the entire strongly connected
components within the source associated with each loop. This is produced
irrespective of whether --dump-tree is set. Such graphs may help in analyzing
the problem, but can be very large indeed.

Various commands exist for viewing and manipulating DOT �les. For example
the dot command can be used to convert a DOT �le to a PDF for printing. For
example:

18

Verilator 4.008 5 VERILATION ARGUMENTS

dot -Tpdf -O Vt_unoptflat_simple_2_35_unoptflat.dot

will generate a PDF Vt_unopt�at_simple_2_35_unopt�at.dot.pdf from the
DOT �le.

--savable

Enable including save and restore functions in the generated model.

The user code must create a VerilatedSerialize or VerilatedDeserialze object
then calling the << or >> operators on the generated model and any other
data the process needs saved/restored. These functions are not thread safe, and
are typically called only by a main thread.

For example:

void save_model(const char* filenamep) {

VerilatedSave os;

os.open(filenamep);

os << main_time; // user code must save the timestamp, etc

os << *topp;

}

void restore_model(const char* filenamep) {

VerilatedRestore os;

os.open(filenamep);

os >> main_time;

os >> *topp;

}

--sc

Speci�es SystemC output mode; see also --cc.

--stats

Creates a dump �le with statistics on the design in {pre�x}__stats.txt.

--stats-vars

Creates more detailed statistics, including a list of all the variables by size (plain
--stats just gives a count). See --stats, which is implied by this.

-sv

Speci�es SystemVerilog language features should be enabled; equivalent to "--
language 1800-2005". This option is selected by default, it exists for compati-
bility with other simulators.

+systemverilogext+ext

A synonym for +1800-2017ext+ext.

--threads threads

--no-threads

With --threads 0 or --no-threads, the default, the generated model is not thread
safe. With --threads 1, the generated model is single threaded but may run in
a multithreaded environment. With --threads N, where N >= 2, the model is
generated to run multithreaded on up to N threads. See �17.

19

Verilator 4.008 5 VERILATION ARGUMENTS

--threads-dpi all

--threads-dpi none

--threads-dpi pure

When using --dpi with --threads, control what DPI tasks are thread safe.

With --threads-dpi all, enable Verilator to assume all DPI imports are thread-
safe, and to use thread-local storage for communication with DPI, potentially
improving performance. Any DPI libraries need appropriate mutexes to avoid
unde�ned behavior.

With --threads-dpi none, Verilator assume DPI imports are not thread safe,
and Verilator will serialize calls to DPI imports by default, potentially harming
performance.

With --threads-dpi pure, the default, Verilator assumes DPI pure imports are
threadsafe, but non-pure DPI imports are not.

--threads-max-mtasks value

Rarely needed. When using --threads, specify the number of mtasks the model
is to be partitioned into. If unspeci�ed, Verilator approximates a good value.

--top-module topname

When the input Verilog contains more than one top level module, speci�es the
name of the top level Verilog module to become the top, and sets the default
for if --pre�x is not used. This is not needed with standard designs with only
one top.

--trace

Adds waveform tracing code to the model using VCD format. This overrides
--trace-fst and --trace-lxt2.

Verilator will generate additional {pre�x}__Trace*.cpp �les that will need to
be compiled. In addition verilated_vcd_sc.cpp (for SystemC traces) or ver-
ilated_vcd_c.cpp (for both) must be compiled and linked in. If using the
Verilator generated Make�les, these �les will be added as source targets for
you. If you're not using the Verilator make�les, you will need to add these to
your Make�le manually.

Having tracing compiled in may result in some small performance losses, even
when waveforms are not turned on during model execution.

--trace-fst

Enable FST waveform tracing in the model. This overrides --trace and --trace-lxt2.

--trace-lxt2

Enable LXT2 waveform tracing in the model. This overrides --trace and
--trace-fst. This option is deprecated in favor of FST traces and may be
removed in the near future.

--trace-depth levels

Specify the number of levels deep to enable tracing, for example --trace-level 1
to only see the top level's signals. Defaults to the entire model. Using a small
number will decrease visibility, but greatly improve runtime and trace �le size.

20

Verilator 4.008 5 VERILATION ARGUMENTS

--trace-max-array depth

Rarely needed. Specify the maximum array depth of a signal that may be
traced. Defaults to 32, as tracing large arrays may greatly slow traced simula-
tions.

--trace-max-width width

Rarely needed. Specify the maximum bit width of a signal that may be traced.
Defaults to 256, as tracing large vectors may greatly slow traced simulations.

--no-trace-params

Disable tracing of parameters.

--trace-structs

Enable tracing to show the name of packed structure, union, and packed array
�elds, rather than a simgle combined packed bus. Due to VCD �le format
constraints this may result in signi�cantly slower trace times and larger trace
�les.

--trace-underscore

Enable tracing of signals that start with an underscore. Normally, these signals
are not output during tracing. See also --coverage-underscore.

-Uvar

Unde�nes the given preprocessor symbol.

--unroll-count loops

Rarely needed. Speci�es the maximum number of loop iterations that may be
unrolled. See also BLKLOOPINIT warning.

--unroll-stmts statements

Rarely needed. Speci�es the maximum number of statements in a loop for that
loop to be unrolled. See also BLKLOOPINIT warning.

--unused-regexp regexp

Rarely needed. Speci�es a simple regexp with * and ? that if a signal name
matches will suppress the UNUSED warning. Defaults to "*unused*". Setting
it to "" disables matching.

-V

Shows the verbose version, including con�guration information compiled into
Verilator. (Similar to perl -V.) See also --getenv.

-v �lename

Read the �lename as a Verilog library. Any modules in the �le may be used to
resolve cell instantiations in the top level module, else ignored. Note -v is fairly
standard across Verilog tools.

+verilog1995ext+ext

+verilog2001ext+ext

Synonyms for +1364-1995ext+ext and +1364-2001ext+ext respectively

21

Verilator 4.008 5 VERILATION ARGUMENTS

--version

Displays program version and exits.

--vpi

Enable use of VPI and linking against the verilated_vpi.cpp �les.

-Wall

Enable all code style warnings, including code style warnings that are normally
disabled by default. Equivelent to "-Wwarn-lint -Wwarn-style". Excludes some
specialty warnings, i.e. IMPERFECTSCH.

-Werror-message

Convert the speci�ed warning message into an error message. This is gener-
ally to discourage users from violating important site-wide rules, for example
-Werror-NOUNOPTFLAT.

-Wfuture-message

Rarely needed. Suppress unknown Verilator comments or warning messages
with the given message code. This is used to allow code written with pragmas
for a later version of Verilator to run under a older version; add -Wfuture-
arguments for each message code or comment that the new version supports
which the older version does not support.

-Wno-message

Disable the speci�ed warning message, or in some cases where noted here disable
an error. This will override any lint_on directives in the source, i.e. the warning
will still not be printed.

-Wno-lint

Disable all lint related warning messages, and all style warnings. This is equiva-
lent to "-Wno-ALWCOMBORDER -Wno-BSSPACE -Wno-CASEINCOMPLETE
-Wno-CASEOVERLAP -Wno-CASEX -Wno-CASEWITHX -Wno-CMPCONST
-Wno-COLONPLUS -Wno-ENDLABEL -Wno-IMPLICIT -Wno-LITENDIAN -
Wno-PINCONNECTEMPTY -Wno-PINMISSING -Wno-SYNCASYNCNET -
Wno-UNDRIVEN -Wno-UNSIGNED -Wno-UNUSED -Wno-WIDTH" plus the
list shown for Wno-style.

It is strongly recommended you cleanup your code rather than using this option,
it is only intended to be use when running test-cases of code received from third
parties.

-Wno-style

Disable all code style related warning messages (note by default they are already
disabled). This is equivalent to "-Wno-DECLFILENAME -Wno-DEFPARAM -
Wno-IMPORTSTAR -Wno-INCABSPATH -Wno-PINCONNECTEMPTY -Wno-
PINNOCONNECT -Wno-SYNCASYNCNET -Wno-UNDRIVEN -Wno-UNUSED
-Wno-VARHIDDEN".

-Wno-fatal

When warnings are detected, print them, but do not exit the simulator.

22

Verilator 4.008 5 VERILATION ARGUMENTS

Having warning messages in builds is sloppy. It is strongly recommended you
cleanup your code, use inline lint_o�, or use -Wno-... �ags rather than using
this option.

-Wwarn-message

Enables the speci�ed warning message.

-Wwarn-lint

Enable all lint related warning messages (note by default they are already
enabled), but do not a�ect style messages. This is equivalent to "-Wwarn-
ALWCOMBORDER -Wwarn-BSSPACE -Wwarn-CASEINCOMPLETE -Wwarn-
CASEOVERLAP -Wwarn-CASEX -Wwarn-CASEWITHX -Wwarn-CMPCONST
-Wwarn-COLONPLUS -Wwarn-ENDLABEL -Wwarn-IMPLICIT -Wwarn-LITENDIAN
-Wwarn-PINMISSING -Wwarn-REALCVT -Wwarn-UNSIGNED -Wwarn-WIDTH".

-Wwarn-style

Enable all code style related warning messages. This is equivalent to "-Wwarn
ASSIGNDLY -Wwarn-DECLFILENAME -Wwarn-DEFPARAM -Wwarn-INCABSPATH
-Wwarn-PINNOCONNECT -Wwarn-SYNCASYNCNET -Wwarn-UNDRIVEN
-Wwarn-UNUSED -Wwarn-VARHIDDEN".

--x-assign 0

--x-assign 1

--x-assign fast (default)

--x-assign unique

Controls the two-state value that is replaced when an assignment to X is en-
countered. --x-assign=fast, the default, converts all Xs to whatever is best for
performance. --x-assign=0 converts all Xs to 0s, and is also fast. --x-assign=1
converts all Xs to 1s, this is nearly as fast as 0, but more likely to �nd reset
bugs as active high logic will �re. --x-assign=unique will call a function to de-
termine the value, this allows randomization of all Xs to �nd reset bugs and is
the slowest, but safest for �nding reset bugs in code.

If using --x-assign unique, you may want to seed your random number generator
such that each regression run gets a di�erent randomization sequence. Use the
system's srand48() or for Windows srand() function to do this. You'll probably
also want to print any seeds selected, and code to enable rerunning with that
same seed so you can reproduce bugs.

Note. This option applies only to variables which are explicitly assigned to X
in the Verilog source code. Initial values of clocks are set to 0 unless --x-initial-
edge is speci�ed. Initial values of all other state holding variables are controlled
with --x-initial.

--x-initial 0

--x-initial fast

--x-initial unique (default)

Controls the two-state value that is used to initialize variables that are not
otherwise initialized.

23

Verilator 4.008 5 VERILATION ARGUMENTS

--x-initial=0, initializes all otherwise uninitialized variables to zero.

--x-initial=unique, the default, initializes variables using a function, which de-
termines the value to use each initialization. This gives greatest �exibility and
allows �nding reset bugs. See �21.

--x-initial=fast, is best for performance, and initializes all variables to a state
Verilator determines is optimal. This may allow further code optimizations, but
will likely hide any code bugs relating to missing resets.

Note. This option applies only to initial values of variables. Initial values of
clocks are set to 0 unless --x-initial-edge is speci�ed.

--x-initial-edge

Enables emulation of event driven simulators which generally trigger an edge
on a transition from X to 1 (posedge) or X to 0 (negedge). Thus the following
code, where rst_n is uninitialized would set res_n to 1'b1 when rst_n is �rst
set to zero:

reg res_n = 1'b0;

always @(negedge rst_n) begin

if (rst_n == 1'b0) begin

res_n <= 1'b1;

end

end

In Verilator, by default, uninitialized clocks are given a value of zero, so the
above always block would not trigger.

While it is not good practice, there are some designs that rely on X � 0
triggering a negedge, particularly in reset sequences. Using --x-initial-edge with
Verilator will replicate this behavior. It will also ensure that X � 1 triggers a
posedge.

Note. Some users have reported that using this option can a�ect convergence,
and that it may be necessary to use --converge-limit to increase the number of
convergence iterations. This may be another indication of problems with the
modelled design that should be addressed.

--xml-only

Create XML output only, do not create any other output.

The XML format is intended to be used to leverage Verilator's parser and
elaboration to feed to other downstream tools. Be aware that the XML format
is still evolving; there will be some changes in future versions.

-y dir

Add the directory to the list of directories that should be searched for include
�les or libraries. The three �ags -y, +incdir and -I have similar e�ect; +incdir
and +y are fairly standard across Verilog tools while -I is an alias for GCC
compatibility.

Verilator defaults to the current directory ("-y .") and any speci�ed --Mdir,
though these default paths are used after any user speci�ed directories. This
allows '-y "$(pwd)"' to be used if absolute �lenames are desired for error mes-
sages instead of relative �lenames.

24

Verilator 4.008 7 EXAMPLE C++ EXECUTION

6 RUNTIME ARGUMENTS

The following are the arguments that may be passed to a Verilated executable, pro-
vided that executable calls Verilated::commandArgs().

All runtime arguments begin with +verilator, so that the user's executable may skip
over all +verilator arguments when parsing its command line.

+verilator+debug

Enable debugging. Equivalent to +verilator+debugi+4.

+verilator+debugi+value

Enable debugging at the provided level.

+verilator+help

Display help and exit.

+verilator+prof+threads+�le+�lename

When using --prof-threads, the �lename to dump to. Defaults to "pro�le_threads.dat".

+verilator+prof+threads+start+value

When using --prof-threads, Verilator will wait until $time is at this value, then
start the pro�ling warmup, then capturing. Generally this should be set to some
time that is well within the normal operation of the simulation, i.e. outside of
reset. If 0, the dump is disabled. Defaults to 1.

+verilator+prof+threads+window+value

When using --prof-threads, after $time reaches +verilator+prof+threads+start,
Verilator will warm up the pro�ling for this number of eval() calls, then will
capture the pro�ling of this number of eval() calls. Defaults to 2, which makes
sense for a single-clock-domain module where it's typical to want to capture
one posedge eval() and one negedge eval().

+verilator+rand+reset+value

When a model was Verilated using "-x-inital unique", sets the initialization
technique. 0 = Reset to zeros. 1 = Reset to all-ones. 2 = Randomize. See �21.

+verilator+V

Shows the verbose version, including con�guration information.

+verilator+version

Displays program version and exits.

7 EXAMPLE C++ EXECUTION

We'll compile this example into C++.

25

Verilator 4.008 7 EXAMPLE C++ EXECUTION

mkdir test_our

cd test_our

cat <<EOF >our.v

module our;

initial begin $display("Hello World"); $finish; end

endmodule

EOF

cat <<EOF >sim_main.cpp

#include "Vour.h"

#include "verilated.h"

int main(int argc, char** argv, char** env) {

Verilated::commandArgs(argc, argv);

Vour* top = new Vour;

while (!Verilated::gotFinish()) { top->eval(); }

delete top;

exit(0);

}

EOF

See the README in the source kit for various ways to install or point to Verilator
binaries. In brief, if you are running Verilator that came from your operating system
(as an RPM), or did a "make install" to place Verilator into your default path, you
do not need anything special in your environment, and should not have VERILA-
TOR_ROOT set. However, if you installed Verilator from sources and want to run
Verilator out of where you compiled Verilator, you need to point to the kit:

See above; don't do this if using an OS-distributed Verilator

export VERILATOR_ROOT=/path/to/where/verilator/was/installed

export PATH=$VERILATOR_ROOT/bin:$PATH

Now we run Verilator on our little example.

verilator -Wall --cc our.v --exe sim_main.cpp

We can see the source code under the "obj_dir" directory. See the FILES section
below for descriptions of some of the �les that were created.

ls -l obj_dir

We then can compile it

make -j -C obj_dir -f Vour.mk Vour

26

Verilator 4.008 8 EXAMPLE SYSTEMC EXECUTION

(Verilator included a default compile rule and link rule, since we used --exe and passed
a .cpp �le on the Verilator command line. You can also write your own compile rules,
as we'll show in the SYSTEMC section.)

And now we run it

obj_dir/Vour

And we get as output

Hello World

- our.v:2: Verilog $finish

Really, you're better o� writing a Make�le to do all this for you. Then, when your
source changes it will automatically run all of these steps; to aid this Verilator can
create a make�le dependency �le. See the examples directory in the distribution.

8 EXAMPLE SYSTEMC EXECUTION

This is an example similar to the above, but using SystemC.

mkdir test_our_sc

cd test_our_sc

cat <<EOF >our.v

module our (clk);

input clk; // Clock is required to get initial activation

always @ (posedge clk)

begin $display("Hello World"); $finish; end

endmodule

EOF

cat <<EOF >sc_main.cpp

#include "Vour.h"

int sc_main(int argc, char **argv) {

Verilated::commandArgs(argc, argv);

sc_clock clk ("clk",10, 0.5, 3, true);

Vour* top;

top = new Vour("top");

top->clk(clk);

while (!Verilated::gotFinish()) { sc_start(1, SC_NS); }

delete top;

27

Verilator 4.008 8 EXAMPLE SYSTEMC EXECUTION

exit(0);

}

EOF

See the README in the source kit for various ways to install or point to Verilator
binaries. In brief, if you are running Verilator that came from your operating system
(as an RPM), or did a "make install" to place Verilator into your default path, you
do not need anything special in your environment, and should not have VERILA-
TOR_ROOT set. However, if you installed Verilator from sources and want to run
Verilator out of where you compiled Verilator, you need to point to the kit:

See above; don't do this if using an OS-distributed Verilator

export VERILATOR_ROOT=/path/to/where/verilator/was/installed

export PATH=$VERILATOR_ROOT/bin:$PATH

Now we run Verilator on our little example.

verilator -Wall --sc our.v

We then can compile it

cd obj_dir

make -j -f Vour.mk Vour__ALL.a

make -j -f Vour.mk ../sc_main.o verilated.o

And link with SystemC. Note your path to the libraries may vary, depending on the
operating system.

export SYSTEMC_LIBDIR=/path/to/where/libsystemc.a/exists

export LD_LIBRARY_PATH=$SYSTEMC_LIBDIR:$LD_LIBRARY_PATH

Might be needed if SystemC 2.3.0

export SYSTEMC_CXX_FLAGS=-pthread

g++ -L$SYSTEMC_LIBDIR ../sc_main.o Vour__ALL*.o verilated.o \

-o Vour -lsystemc

And now we run it

cd ..

obj_dir/Vour

And we get the same output as the C++ example:

28

Verilator 4.008 9 BENCHMARKING & OPTIMIZATION

Hello World

- our.v:2: Verilog $finish

Really, you're better o� using a Make�le to do all this for you. Then, when your
source changes it will automatically run all of these steps. See the examples directory
in the distribution.

9 BENCHMARKING & OPTIMIZATION

For best performance, run Verilator with the "-O3 --x-assign=fast --x-initial=fast --
noassert" �ags. The -O3 �ag will require longer compile times, and --x-assign=fast
--x-initial=fast may increase the risk of reset bugs in trade for performance; see the
above documentation for these �ags.

If using Verilated multithreaded, use numactl to ensure you are using non-con�icting
hardware resources. See �17.

Minor Verilog code changes can also give big wins. You should not have any UNOPT-
FLAT warnings from Verilator. Fixing these warnings can result in huge improve-
ments; one user �xed their one UNOPTFLAT warning by making a simple change to
a clock latch used to gate clocks and gained a 60% performance improvement.

Beyond that, the performance of a Verilated model depends mostly on your C++
compiler and size of your CPU's caches.

By default, the lib/verilated.mk �le has optimization turned o�. This is for the bene�t
of new users, as it improves compile times at the cost of runtimes. To add optimiza-
tion as the default, set one of three variables, OPT, OPT_FAST, or OPT_SLOW
lib/verilated.mk. Or, use the -CFLAGS and/or -LDFLAGS option on the verilator
command line to pass the �ags directly to the compiler or linker. Or, just for one
run, pass them on the command line to make:

make OPT_FAST="-O2 -fno-stack-protector" -f Vour.mk Vour__ALL.a

OPT_FAST speci�es optimizations for those programs that are part of the fast path,
mostly code that is executed every cycle. OPT_SLOW speci�es optimizations for
slow-path �les (plus tracing), which execute only rarely, yet take a long time to com-
pile with optimization on. OPT speci�es overall optimization and a�ects all compiles,
including those OPT_FAST and OPT_SLOW control. For best results, use OPT="-
O2", and link with "-static". Nearly the same results can be had with much better
compile times with OPT_FAST="-O1 -fstrict-aliasing". Higher optimization such as
"-O3" may help, but gcc compile times may be excessive under O3 on even medium
sized designs. Alternatively, some larger designs report better performance using
"-Os".

Unfortunately, using the optimizer with SystemC �les can result in compiles taking

29

Verilator 4.008 10 FILES

several minutes. (The SystemC libraries have many little inlined functions that drive
the compiler nuts.)

For best results, use GCC 3.3 or newer. GCC 3.2 and earlier have optimization bugs
around pointer aliasing detection, which can result in 2x performance losses.

If you will be running many simulations on a single compile, investigate feedback
driven compilation. With GCC, using -fpro�le-arcs, then -fbranch-probabilities will
yield another 15% or so.

Modern compilers also support link-time optimization (LTO), which can help espe-
cially if you link in DPI code. To enable LTO on GCC, pass "-�to" in both compilation
and link. Note LTO may cause excessive compile times on large designs.

If you are using your own make�les, you may want to compile the Verilated code with
-DVL_INLINE_OPT=inline. This will inline functions, however this requires that
all cpp �les be compiled in a single compiler run.

You may uncover further tuning possibilities by pro�ling the Verilog code. Use Ver-
ilator's --prof-cfuncs, then GCC's -g -pg. You can then run either opro�le or gprof
to see where in the C++ code the time is spent. Run the gprof output through
verilator_profcfunc and it will tell you what Verilog line numbers on which most of
the time is being spent.

When done, please let the author know the results. I like to keep tabs on how Verilator
compares, and may be able to suggest additional improvements.

10 FILES

All output �les are placed in the output directory name speci�ed with the -Mdir
option, or "obj_dir" if not speci�ed.

Verilator creates the following �les in the output directory:

{prefix}.mk // Make include file for compiling

{prefix}_classes.mk // Make include file with class names

For -cc and -sc mode, it also creates:

{prefix}.cpp // Top level C++ file

{prefix}.h // Top level header

{prefix}__Slow{__n}.cpp // Constructors and infrequent routines

{prefix}{__n}.cpp // Additional top C++ files (--output-split)

{prefix}{each_verilog_module}.cpp // Lower level internal C++ files

{prefix}{each_verilog_module}.h // Lower level internal header files

{prefix}{each_verilog_module}{__n}.cpp // Additional lower C++ files (--output-split)

30

Verilator 4.008 11 ENVIRONMENT

In certain debug and other modes, it also creates:

{prefix}.xml // XML tree information (--xml)

{prefix}__Dpi.cpp // DPI import and export wrappers

{prefix}__Dpi.h // DPI import and export declarations

{prefix}__Inlines.h // Inline support functions

{prefix}__Syms.cpp // Global symbol table C++

{prefix}__Syms.h // Global symbol table header

{prefix}__Trace__Slow{__n}.cpp // Wave file generation code (--trace)

{prefix}__Trace{__n}.cpp // Wave file generation code (--trace)

{prefix}__cdc.txt // Clock Domain Crossing checks (--cdc)

{prefix}__stats.txt // Statistics (--stats)

It also creates internal �les that can be mostly ignored:

{mod_prefix}_{each_verilog_module}{__n}.vpp // Post-processed verilog

{prefix}__ver.d // Make dependencies (-MMD)

{prefix}__verFiles.dat // Timestamps for skip-identical

{prefix}{misc}.dot // Debugging graph files (--debug)

{prefix}{misc}.tree // Debugging files (--debug)

After running Make, the C++ compiler may produce the following:

verilated{misc}.d // Intermediate dependencies

verilated{misc}.o // Intermediate objects

{mod_prefix}{misc}.d // Intermediate dependencies

{mod_prefix}{misc}.o // Intermediate objects

{prefix} // Final executable (w/--exe argument)

{prefix}__ALL.a // Library of all Verilated objects

{prefix}__ALLboth.cpp // Include of classes for single compile

{prefix}__ALLcls.cpp // Include of user classes for single compile

{prefix}__ALLsup.cpp // Include of support files for single compile

{prefix}{misc}.d // Intermediate dependencies

{prefix}{misc}.o // Intermediate objects

11 ENVIRONMENT

LD_LIBRARY_PATH

A generic Linux/OS variable specifying what directories have shared object (.so)
�les. This path should include SystemC and any other shared objects needed
at runtime.

OBJCACHE

Optionally speci�es a caching or distribution program to place in front of all
runs of the C++ Compiler. For example, "objcache --read --write", or "ccache".

31

Verilator 4.008 11 ENVIRONMENT

If using distcc or icecc/icecream, they would generally be run under either
objcache or ccache; see the documentation for those programs.

SYSTEMC

Deprecated. Used only if SYSTEMC_INCLUDE or SYSTEMC_LIBDIR is
not set. If set, speci�es the directory containing the SystemC distribution. If
not speci�ed, it will come from a default optionally speci�ed at con�gure time
(before Verilator was compiled).

SYSTEMC_ARCH

Deprecated. Used only if SYSTEMC_LIBDIR is not set. Speci�es the archi-
tecture name used by the SystemC kit. This is the part after the dash in the
lib-{...} directory name created by a 'make' in the SystemC distribution. If not
set, Verilator will try to intuit the proper setting, or use the default optionally
speci�ed at con�gure time (before Verilator was compiled).

SYSTEMC_CXX_FLAGS

Speci�es additional �ags that are required to be passed to GCC when building
the SystemC model. System 2.3.0 may need this set to "-pthread".

SYSTEMC_INCLUDE

If set, speci�es the directory containing the systemc.h header �le. If not spec-
i�ed, it will come from a default optionally speci�ed at con�gure time (before
Verilator was compiled), or computed from SYSTEMC/include.

SYSTEMC_LIBDIR

If set, speci�es the directory containing the libsystemc.a library. If not speci-
�ed, it will come from a default optionally speci�ed at con�gure time (before
Verilator was compiled), or computed from SYSTEMC/lib-SYSTEMC_ARCH.

VCS_HOME

If set, speci�es the directory containing the Synopsys VCS distribution. When
set, a 'make test' in the Verilator distribution will also run VCS baseline re-
gression tests.

VERILATOR_BIN

If set, speci�es an alternative name of the Verilator binary. May be used for
debugging and selecting between multiple operating system builds.

VERILATOR_GDB

If set, the command to run when using the --gdb option, such as "ddd". If not
speci�ed, it will use "gdb".

VERILATOR_ROOT

Speci�es the directory containing the distribution kit. This is used to �nd the
executable, Perl library, and include �les. If not speci�ed, it will come from a
default optionally speci�ed at con�gure time (before Verilator was compiled). It
should not be speci�ed if using a pre-compiled Verilator RPM as the hardcoded
value should be correct.

32

Verilator 4.008 12 CONNECTING TO C++

12 CONNECTING TO C++

Verilator creates a .h and .cpp �le for the top level module and all modules under it.
See the examples directory in the kit for examples.

After the modules are completed, there will be a module.mk �le that may be used
with Make to produce a module__ALL.a �le with all required objects in it. This is
then linked with the user's top level to create the simulation executable.

The user must write the top level of the simulation. Here's a simple example:

#include <verilated.h> // Defines common routines

#include <iostream> // Need std::cout

#include "Vtop.h" // From Verilating "top.v"

Vtop *top; // Instantiation of module

vluint64_t main_time = 0; // Current simulation time

// This is a 64-bit integer to reduce wrap over issues and

// allow modulus. You can also use a double, if you wish.

double sc_time_stamp () { // Called by $time in Verilog

return main_time; // converts to double, to match

// what SystemC does

}

int main(int argc, char** argv) {

Verilated::commandArgs(argc, argv); // Remember args

top = new Vtop; // Create instance

top->reset_l = 0; // Set some inputs

while (!Verilated::gotFinish()) {

if (main_time > 10) {

top->reset_l = 1; // Deassert reset

}

if ((main_time % 10) == 1) {

top->clk = 1; // Toggle clock

}

if ((main_time % 10) == 6) {

top->clk = 0;

}

33

Verilator 4.008 14 DIRECT PROGRAMMING INTERFACE (DPI)

top->eval(); // Evaluate model

cout << top->out << endl; // Read a output

main_time++; // Time passes...

}

top->final(); // Done simulating

// // (Though this example doesn't get here)

delete top;

}

Note signals are read and written as member variables of the lower module. You
call the eval() method to evaluate the model. When the simulation is complete call
the �nal() method to wrap up any SystemVerilog �nal blocks, and complete any
assertions.

13 CONNECTING TO SYSTEMC

Verilator will convert the top level module to a SC_MODULE. This module will plug
directly into a SystemC netlist.

The SC_MODULE gets the same pinout as the Verilog module, with the following
type conversions: Pins of a single bit become bool. Pins 2-32 bits wide become
uint32_t's. Pins 33-64 bits wide become sc_bv's or vluint64_t's depending on the
--no-pins64 switch. Wider pins become sc_bv's. (Uints simulate the fastest so are
used where possible.)

Lower modules are not pure SystemC code. This is a feature, as using the SystemC pin
interconnect scheme everywhere would reduce performance by an order of magnitude.

14 DIRECT PROGRAMMING INTERFACE (DPI)

Verilator supports SystemVerilog Direct Programming Interface import and export
statements. Only the SystemVerilog form ("DPI-C") is supported, not the original
Synopsys-only DPI.

DPI Example

In the SYSTEMC example above, if you wanted to import C++ functions into Ver-
ilog, put in our.v:

import "DPI-C" function integer add (input integer a, input integer b);

34

Verilator 4.008 14 DIRECT PROGRAMMING INTERFACE (DPI)

initial begin

$display("%x + %x = %x", 1, 2, add(1,2));

endtask

Then after Verilating, Verilator will create a �le Vour__Dpi.h with the prototype to
call this function:

extern int add (int a, int b);

From the sc_main.cpp �le (or another .cpp �le passed to the Verilator command line,
or the link), you'd then:

#include "svdpi.h"

#include "Vour__Dpi.h"

int add (int a, int b) { return a+b; }

DPI System Task/Functions

Verilator extends the DPI format to allow using the same scheme to e�ciently add
system functions. Simply use a dollar-sign pre�xed system function name for the
import, but note it must be escaped.

export "DPI-C" function integer \$myRand;

initial $display("myRand=%d", $myRand());

Going the other direction, you can export Verilog tasks so they can be called from
C++:

export "DPI-C" task publicSetBool;

task publicSetBool;

input bit in_bool;

var_bool = in_bool;

endtask

Then after Verilating, Verilator will create a �le Vour__Dpi.h with the prototype to
call this function:

extern bool publicSetBool(bool in_bool);

35

Verilator 4.008 14 DIRECT PROGRAMMING INTERFACE (DPI)

From the sc_main.cpp �le, you'd then:

#include "Vour__Dpi.h"

publicSetBool(value);

Or, alternatively, call the function under the design class. This isn't DPI compatible
but is easier to read and better supports multiple designs.

#include "Vour__Dpi.h"

Vour::publicSetBool(value);

// or top->publicSetBool(value);

Note that if the DPI task or function accesses any register or net within the RTL, it
will require a scope to be set. This can be done using the standard functions within
svdpi.h, after the module is instantiated, but before the task(s) and/or function(s)
are called.

For example, if the top level module is instantiated with the name "dut" and the
name references within tasks are all hierarchical (dotted) names with respect to that
top level module, then the scope could be set with

#include "svdpi.h"

...

svSetScope (svGetScopeFromName ("dut"));

(Remember that Verilator adds a "V" to the top of the module hierarchy.)

Scope can also be set from within a DPI imported C function that has been called
from Verilog by querying the scope of that function. See the sections on DPI Context
Functions and DPI Header Isolation below and the comments within the svdpi.h
header for more information.

DPI Display Functions

Verilator allows writing $display like functions using this syntax:

import "DPI-C" function void

\$my_display (input string formatted /*verilator sformat*/);

The /*verilator sformat*/ indicates that this function accepts a $display like format
speci�er followed by any number of arguments to satisfy the format.

36

Verilator 4.008 14 DIRECT PROGRAMMING INTERFACE (DPI)

DPI Context Functions

Verilator supports IEEE DPI Context Functions. Context imports pass the simulator
context, including calling scope name, and �lename and line number to the C code.
For example, in Verilog:

import "DPI-C" context function int dpic_line();

initial $display("This is line %d, again, line %d\n", `line, dpic_line());

This will call C++ code which may then use the svGet* functions to read information,
in this case the line number of the Verilog statement that invoked the dpic_line
function:

int dpic_line() {

// Get a scope: svScope scope = svGetScope();

const char* scopenamep = svGetNameFromScope(scope);

assert(scopenamep);

const char* filenamep = "";

int lineno = 0;

if (svGetCallerInfo(&filenamep, &lineno)) {

printf("dpic_line called from scope %s on line %d\n",

scopenamep, lineno);

return lineno;

} else {

return 0;

}

}

See the IEEE Standard for more information.

DPI Header Isolation

Verilator places the IEEE standard header �les such as svdpi.h into a separate in-
clude directory, vltstd (VeriLaTor STandarD). When compiling most applications
$VERILATOR_ROOT/include/vltstd would be in the include path along with the
normal $VERILATOR_ROOT/include. However, when compiling Verilated models
into other simulators which have their own svdpi.h and similar standard �les with
di�erent contents, the vltstd directory should not be included to prevent picking up
incompatible de�nitions.

37

Verilator 4.008 15 VERIFICATION PROCEDURAL INTERFACE (VPI)

Public Functions

Instead of DPI exporting, there's also Verilator public functions, which are slightly
faster, but less compatible.

15 VERIFICATION PROCEDURAL INTERFACE
(VPI)

Verilator supports a very limited subset of the VPI. This subset allows inspection,
examination, value change callbacks, and depositing of values to public signals only.

VPI is enabled with the verilator --vpi switch.

To access signals via the VPI, Verilator must be told exactly which signals are to be
accessed. This is done using the Verilator public pragmas documented below.

Verilator has an important di�erence from an event based simulator; signal values
that are changed by the VPI will not immediately propagate their values, instead
the top level header �le's eval() method must be called. Normally this would be part
of the normal evaluation (i.e. the next clock edge), not as part of the value change.
This makes the performance of VPI routines extremely fast compared to event based
simulators, but can confuse some test-benches that expect immediate propagation.

Note the VPI by its speci�ed implementation will always be much slower than ac-
cessing the Verilator values by direct reference (structure->module->signame), as the
VPI accessors perform lookup in functions at runtime requiring at best hundreds of
instructions, while the direct references are evaluated by the compiler and result in
only a couple of instructions.

For signal callbacks to work the main loop of the program must call Verilated-
Vpi::callValueCbs().

VPI Example

In the below example, we have readme marked read-only, and writeme which if written
from outside the model will have the same semantics as if it changed on the speci�ed
clock edge.

cat <<EOF >our.v

module our (input clk);

reg readme /*verilator public_flat_rd*/;

reg writeme /*verilator public_flat_rw @(posedge clk) */;

initial $finish;

endmodule

38

Verilator 4.008 16 CROSS COMPILATION

EOF

There are many online tutorials and books on the VPI, but an example that accesses
the above signal "readme" would be:

cat <<EOF >sim_main.cpp

#include "Vour.h"

#include "verilated.h"

#include "verilated_vpi.h" // Required to get definitions

vluint64_t main_time = 0; // See comments in first example

double sc_time_stamp () { return main_time; }

void read_and_check() {

vpiHandle vh1 = vpi_handle_by_name((PLI_BYTE8*)"TOP.our.readme", NULL);

if (!vh1) { vl_fatal(__FILE__, __LINE__, "sim_main", "No handle found"); }

const char* name = vpi_get_str(vpiName, vh1);

printf("Module name: %s\n", name); // Prints "readme"

s_vpi_value v;

v.format = vpiIntVal;

vpi_get_value(vh1, &v);

printf("Value of v: %d\n", v.value.integer); // Prints "readme"

}

int main(int argc, char** argv, char** env) {

Verilated::commandArgs(argc, argv);

Vour* top = new Vour;

Verilated::internalsDump(); // See scopes to help debug

while (!Verilated::gotFinish()) {

top->eval();

VerilatedVpi::callValueCbs(); // For signal callbacks

read_and_check();

}

delete top;

exit(0);

}

EOF

16 CROSS COMPILATION

Verilator supports cross-compiling Verilated code. This is generally used to run Ver-
ilator on a Linux system and produce C++ code that is then compiled on Windows.

39

Verilator 4.008 17 MULTITHREADING

Cross compilation involves up to three di�erent OSes. The build system is where you
con�gured and compiled Verilator, the host system where you run Verilator, and the
target system where you compile the Verilated code and run the simulation.

Currently, Verilator requires the build and host system type to be the same, though
the target system type may be di�erent. To support this, ./con�gure and make
Verilator on the build system. Then, run Verilator on the host system. Finally, the
output of Verilator may be compiled on the di�erent target system.

To support this, none of the �les that Verilator produces will reference any con�gure
generated build-system speci�c �les, such as con�g.h (which is renamed in Verilator
to con�g_build.h to reduce confusion.) The disadvantage of this approach is that
include/verilatedos.h must self-detect the requirements of the target system, rather
than using con�gure.

The target system may also require edits to the Make�les, the simple Make�les pro-
duced by Verilator presume the target system is the same type as the build system.

Cadence NC-SystemC Models

Similar to compiling Verilated designs with gcc, Verilated designs may be compiled
inside other simulators that support C++ or SystemC models. One such simulator
is Cadence's NC-SystemC, part of their Incisive Veri�cation Suite. (Highly recom-
mended.)

Using the example �les above, the following command will build the model underneath
NC:

cd obj_dir

ncsc_run \

sc_main.cpp \

Vour__ALLcls.cpp \

Vour__ALLsup.cpp \

verilated.cpp

For larger designs you'll want to automate this using make�les, which pull the names
of the .cpp �les to compile in from the make variables generated in obj_dir/Vour_classes.mk.

17 MULTITHREADING

Verilator experimentally supports multithreading.

With --no-threads, the default, the model is not thread safe, and any use of more
than one thread calling into one or even di�erent Verilated models may result in
unpredictable behavior. This gives the highest single thread performance.

40

Verilator 4.008 17 MULTITHREADING

With --threads 1, the generated model is single threaded, however the support li-
braries are multithread safe. This allows di�erent instantiations of model(s) to po-
tentially each be run under a di�erent thread. All threading is the responsibility of
the user's C++ testbench.

With --threads N, where N is at least 2, the generated model will be designed to run
in parallel on N threads. The thread calling eval() provides one of those threads,
and the generated model will create and manage the other N-1 threads. It's the
client's responsibility not to oversubscribe the available CPU cores. Under CPU
oversubscription, the Verilated model should not livelock nor deadlock, however, you
can expect performance to be far worse than it would be with proper stoichiometry
of threads and CPU cores.

The remainder of this section describe behavior with --threads 1 or --threads N (not
--no-threads).

VL_THREADED is de�ned when compiling a threaded Verilated module, causing
the Verilated support classes become threadsafe.

The thread used for constructing a model must the the same thread that calls eval()
into the model, this is called the "eval thread". The thread used to perform certain
global operations such as saving and tracing must be done by a "main thread". In
most cases the eval thread and main thread are the same thread (i.e. the user's top
C++ testbench runs on a single thread), but this is not required.

When running a multithreaded model, the default Linux task scheduler often works
against the model, by assuming threads are short lived, and thus often schedules
threads using multiple hyperthreads within the same physical core. For best per-
formance use the numactl program to (when the threading count �ts) select unique
physical cores on the same socket. For example, if a model was Verilated with "--
threads 4", we consult

egrep 'processor|physical id|core id' /proc/cpuinfo

To select cores 0, 1, 2, and 3 that are all located on the same socket (0) but di�erent
physical cores. (Also useful is "numactl --hardware", or lscpu but those doesn't show
Hyperthreading cores.) Then we execute

numactl -m 0 -C 0,1,2,3 -- verilated_executable_name

This will limit memory to socket 0, and threads to cores 0, 1, 2, 3, (presumably
on socket 0) optimizing performance. Of course this must be adjusted if you want
another simulator using e.g. socket 1, or if you Verilated with a di�erent number of
threads. To see what CPUs are actually used, use --prof-threads.

41

Verilator 4.008 18 CONFIGURATION FILES

Multithreaded Verilog and Library Support

$display/$stop/$�nish are delayed until the end of an eval() call in order to maintain
ordering between threads. This may result in additional tasks completing after the
$stop or $�nish.

If using --coverage, the coverage routines are fully thread safe.

If using --dpi, Verilator assumes pure DPI imports are thread safe, balancing perfor-
mance versus saftey. See --threads-dpi.

If using --savable, the save/restore classes are not multithreaded and are must be
called only by the eval thread.

If using --sc, the SystemC kernel is not thread safe, therefore the eval thread and
main thread must be the same.

If using --trace, the tracing classes must be constructed and called from the main
thread.

If using --vpi, since SystemVerilog VPI was not architected by IEEE to be multi-
threaded, Verilator requires all VPI calls are only made from the main thread.

18 CONFIGURATION FILES

In addition to the command line, warnings and other features may be controlled by
con�guration �les, typically named with the .vlt extension. An example:

`verilator_config

lint_off -msg WIDTH

lint_off -msg CASEX -file "silly_vendor_code.v"

This disables WIDTH warnings globally, and CASEX for a speci�c �le.

Con�guration �les are parsed after the normal Verilog preprocessing, so `ifdefs, `de-
�nes, and comments may be used as if it were normal Verilog code.

The grammar of con�guration commands is as follows:

`verilator_con�g

Take remaining text up the the next `verilog mode switch and treat it as Veri-
lator con�guration commands.

coverage_on [-�le "<�lename>" [-lines <line> [- <line>]]]

42

Verilator 4.008 19 LANGUAGE STANDARD SUPPORT

coverage_o� [-�le "<�lename>" [-lines <line> [- <line>]]]

Enable/disable coverage for the speci�ed �lename (or wildcard with '*' or '?',
or all �les if omitted) and range of line numbers (or all lines if omitted). Often
used to ignore an entire module for coverage analysis purposes.

lint_on [-msg <message>] [-�le "<�lename>" [-lines <line> [- <line>]]]

lint_o� [-msg <message>] [-�le "<�lename>" [-lines <line> [- <line>]]]

Enable/disables the speci�ed lint warning, in the speci�ed �lename (or wildcard
with '*' or '?', or all �les if omitted) and range of line numbers (or all lines if
omitted).

With lint_o� using '*' will override any lint_on directives in the source, i.e.
the warning will still not be printed.

If the -msg is omitted, all lint warnings (see list in -Wno-lint) are enabled/disabled.
This will override all later lint warning enables for the speci�ed region.

tracing_on [-�le "<�lename>" [-lines <line> [- <line>]]]

tracing_o� [-�le "<�lename>" [-lines <line> [- <line>]]]

Enable/disable waveform tracing for all future signals declared in the speci�ed
�lename (or wildcard with '*' or '?', or all �les if omitted) and range of line
numbers (or all lines if omitted).

For tracing_o�, cells below any module in the �les/ranges speci�ed will also
not be traced.

19 LANGUAGE STANDARD SUPPORT

Verilog 2001 (IEEE 1364-2001) Support

Verilator supports most Verilog 2001 language features. This includes signed num-
bers, "always @*", generate statements, multidimensional arrays, localparam, and
C-style declarations inside port lists.

Verilog 2005 (IEEE 1364-2005) Support

Verilator supports most Verilog 2005 language features. This includes the `begin_keywords
and `end_keywords compiler directives, $clog2, and the uwire keyword.

SystemVerilog 2005 (IEEE 1800-2005) Support

Verilator supports ==? and !=? operators, ++ and -- in some contexts, $bits,
$countones, $error, $fatal, $info, $isunknown, $onehot, $onehot0, $unit, $warning,
always_comb, always_�, always_latch, bit, byte, chandle, const, do-while, enum,

43

Verilator 4.008 19 LANGUAGE STANDARD SUPPORT

export, �nal, import, int, interface, logic, longint, modport, package, program, short-
int, struct, time, typedef, union, var, void, priority case/if, and unique case/if.

It also supports .name and .* interconnection.

Verilator partially supports concurrent assert and cover statements; see the enclosed
coverage tests for the syntax which is allowed.

SystemVerilog 2012 (IEEE 1800-2012) Support

Verilator implements a full SystemVerilog 2012 preprocessor, including function call-
like preprocessor de�nes, default de�ne arguments, `__FILE__, `__LINE__ and
`unde�neall.

Verilator currently has some support for SystemVerilog synthesis constructs. As Sys-
temVerilog features enter common usage they are added; please �le a bug if a feature
you need is missing.

SystemVerilog 2017 (IEEE 1800-2017) Support

Verilator supports the 2017 "for" loop constructs, and several minor cleanups made
in 1800-2017.

Verilog AMS Support

Verilator implements a very small subset of Verilog AMS (Verilog Analog and Mixed-
Signal Extensions) with the subset corresponding to those VMS keywords with near
equivalents in the Verilog 2005 or SystemVerilog 2009 languages.

AMS parsing is enabled with "--language VAMS" or "--language 1800+VAMS".

At present Verilator implements ceil, exp, �oor, ln, log, pow, sqrt, string, and wreal.

Synthesis Directive Assertion Support

With the --assert switch, Verilator reads any "//synopsys full_case" or "//synopsys
parallel_case" directives. The same applies to any "//ambit synthesis", "//cadence"
or "//pragma" directives of the same form.

When these synthesis directives are discovered, Verilator will either formally prove
the directive to be true, or failing that, will insert the appropriate code to detect
failing cases at runtime and print an "Assertion failed" error message.

44

Verilator 4.008 20 LANGUAGE EXTENSIONS

Verilator likewise also asserts any "unique" or "priority" SystemVerilog keywords
on case statement, as well as "unique" on if statements. However, "priority if" is
currently simply ignored.

20 LANGUAGE EXTENSIONS

The following additional constructs are the extensions Verilator supports on top of
standard Verilog code. Using these features outside of comments or `ifdef's may break
other tools.

`__FILE__

The __FILE__ de�ne expands to the current �lename as a string, like C++'s
__FILE__. This was incorporated into to the 1800-2009 standard (but sup-
ported by Verilator since 2006!)

`__LINE__

The __LINE__ de�ne expands to the current �lename as a string, like C++'s
__LINE__. This was incorporated into to the 1800-2009 standard (but sup-
ported by Verilator since 2006!)

`error string

This will report an error when encountered, like C++'s #error.

$c(string, ...);

The string will be embedded directly in the output C++ code at the point
where the surrounding Verilog code is compiled. It may either be a standalone
statement (with a trailing ; in the string), or a function that returns up to a
32-bit number (without a trailing ;). This can be used to call C++ functions
from your Verilog code.

String arguments will be put directly into the output C++ code. Expression
arguments will have the code to evaluate the expression inserted. Thus to call
a C++ function, $c("func(",a,")") will result in 'func(a)' in the output C++
code. For input arguments, rather than hard-coding variable names in the string
$c("func(a)"), instead pass the variable as an expression $c("func(",a,")"). This
will allow the call to work inside Verilog functions where the variable is �attened
out, and also enable other optimizations.

If you will be reading or writing any Verilog variables inside the C++ functions,
the Verilog signals must be declared with /*verilator public*/.

You may also append an arbitrary number to $c, generally the width of the out-
put. [signal_32_bits = $c32("...");] This allows for compatibility with other
simulators which require a di�erently named PLI function name for each di�er-
ent output width.

$display, $write, $fdisplay, $fwrite, $sformat, $swrite

Format arguments may use C fprintf sizes after the % escape. Per the Verilog
standard, %x prints a number with the natural width, and %0x prints a number

45

Verilator 4.008 20 LANGUAGE EXTENSIONS

with minimum width. Verilator extends this so %5x prints 5 digits per the C
standard (it's unspeci�ed in Verilog).

`coverage_block_o�

Speci�es the entire begin/end block should be ignored for coverage analysis.
Must be inside a basic block, e.g. within a begin/end pair. Same as /* verilator
coverage_block_o� */.

`systemc_header

Take remaining text up to the next `verilog or `systemc_... mode switch and
place it verbatim into the output .h �le's header. Must be placed as a module
item, e.g. directly inside a module/endmodule pair. Despite the name of this
macro, this also works in pure C++ code.

`systemc_ctor

Take remaining text up to the next `verilog or `systemc_... mode switch and
place it verbatim into the C++ class constructor. Must be placed as a module
item, e.g. directly inside a module/endmodule pair. Despite the name of this
macro, this also works in pure C++ code.

`systemc_dtor

Take remaining text up to the next `verilog or `systemc_... mode switch and
place it verbatim into the C++ class destructor. Must be placed as a module
item, e.g. directly inside a module/endmodule pair. Despite the name of this
macro, this also works in pure C++ code.

`systemc_interface

Take remaining text up to the next `verilog or `systemc_... mode switch and
place it verbatim into the C++ class interface. Must be placed as a module
item, e.g. directly inside a module/endmodule pair. Despite the name of this
macro, this also works in pure C++ code.

`systemc_imp_header

Take remaining text up to the next `verilog or `systemc_... mode switch and
place it verbatim into the header of all �les for this C++ class implementation.
Must be placed as a module item, e.g. directly inside a module/endmodule
pair. Despite the name of this macro, this also works in pure C++ code.

`systemc_implementation

Take remaining text up to the next `verilog or `systemc_... mode switch and
place it verbatim into a single �le of the C++ class implementation. Must be
placed as a module item, e.g. directly inside a module/endmodule pair. Despite
the name of this macro, this also works in pure C++ code.

If you will be reading or writing any Verilog variables in the C++ functions, the
Verilog signals must be declared with /*verilator public*/. See also the public
task feature; writing an accessor may result in cleaner code.

`SYSTEMVERILOG

The SYSTEMVERILOG, SV_COV_START and related standard de�nes are
set by default when --language is 1800-*.

46

Verilator 4.008 20 LANGUAGE EXTENSIONS

`VERILATOR

`verilator

`verilator3

The VERILATOR, verilator and verilator3 de�nes are set by default so you
may `ifdef around compiler speci�c constructs.

`verilator_con�g

Take remaining text up the the next `verilog mode switch and treat it as Veri-
lator con�guration commands.

`verilog

Switch back to processing Verilog code after a `systemc_... mode switch. The
Verilog code returns to the last language mode speci�ed with `begin_keywords,
or SystemVerilog if none was speci�ed.

/*verilator clock_enable*/

Used after a signal declaration to indicate the signal is used to gate a clock,
and the user takes responsibility for insuring there are no races related to it.
(Typically by adding a latch, and running static timing analysis.) For example:

reg enable_r /*verilator clock_enable*/;

wire gated_clk = clk & enable_r;

always_ff @ (posedge clk)

enable_r <= enable_early;

The clock_enable attribute will cause the clock gate to be ignored in the
scheduling algorithm, sometimes required for correct clock behavior, and always
improving performance. It's also a good idea to enable the IMPERFECTSCH
warning, to insure all clock enables are properly recognized.

/*verilator clocker*/

/*verilator no_clocker*/

Used after a signal declaration to indicate the signal is used as clock or not. This
information is used by Verilator to mark the signal as clocker and propagate
the clocker attribute automatically to derived signals. See --clk for more
information.

/*verilator coverage_block_o�*/

Speci�es the entire begin/end block should be ignored for coverage analysis
purposes.

/*verilator coverage_o�*/

Speci�es that following lines of code should have coverage disabled. Often used
to ignore an entire module for coverage analysis purposes.

/*verilator coverage_on*/

Speci�es that following lines of code should have coverage re-enabled (if appro-
priate --coverage �ags are passed) after being disabled earlier with /*verilator
coverage_o�*/.

47

Verilator 4.008 20 LANGUAGE EXTENSIONS

/*verilator inline_module*/

Speci�es the module the comment appears in may be inlined into any modules
that use this module. This is useful to speed up simulation time with some small
loss of trace visibility and modularity. Note signals under inlined submodules
will be named submodule__DOT__subsignal as C++ does not allow "." in
signal names. When tracing such signals the tracing routines will replace the
__DOT__ with the period.

/*verilator isolate_assignments*/

Used after a signal declaration to indicate the assignments to this signal in any
blocks should be isolated into new blocks. When there is a large combinatorial
block that is resulting in a UNOPTFLAT warning, attaching this to the signal
causing a false loop may clear up the problem.

IE, with the following

reg splitme /* verilator isolate_assignments*/;

// Note the placement of the semicolon above

always @* begin

if (....) begin

splitme =;

other assignments

end

end

Verilator will internally split the block that assigns to "splitme" into two blocks:

It would then internally break it into (sort of):

// All assignments excluding those to splitme

always @* begin

if (....) begin

other assignments

end

end

// All assignments to splitme

always @* begin

if (....) begin

splitme =;

end

end

/*verilator lint_o� msg*/

Disable the speci�ed warning message for any warnings following the comment.

/*verilator lint_on msg*/

Re-enable the speci�ed warning message for any warnings following the com-
ment.

/*verilator lint_restore*/

After a /*verilator lint_save*/, pop the stack containing lint message state.
Often this is useful at the bottom of include �les.

48

Verilator 4.008 20 LANGUAGE EXTENSIONS

/*verilator lint_save*/

Push the current state of what lint messages are turned on or turned o� to a
stack. Later meta-comments may then lint_on or lint_o� speci�c messages,
then return to the earlier message state by using /*verilator lint_restore*/. For
example:

// verilator lint_save

// verilator lint_off SOME_WARNING

... // code needing SOME_WARNING turned off

// verilator lint_restore

If SOME_WARNING was on before the lint_o�, it will now be restored to on,
and if it was o� before the lint_o� it will remain o�.

/*verilator no_inline_module*/

Speci�es the module the comment appears in should not be inlined into any
modules that use this module. This is useful especially at the top level module to
reduce the size of the interface class, to aid compile time at a small performance
loss.

/*verilator no_inline_task*/

Used in a function or task variable de�nition section to specify the function or
task should not be inlined into where it is used. This may reduce the size of
the �nal executable when a task is used a very large number of times. For this
�ag to work, the task and tasks below it must be pure; they cannot reference
any variables outside the task itself.

/*verilator public*/ (parameter)

Used after a parameter declaration to indicate the emitted C code should have
the parameter values visible. Due to C++ language restrictions, this may only
be used on 64-bit or narrower integral enumerations.

parameter [2:0] PARAM /*verilator public*/ = 2'b0;

/*verilator public*/ (typedef enum)

Used after an enum typedef declaration to indicate the emitted C code should
have the enum values visible. Due to C++ language restrictions, this may only
be used on 64-bit or narrower integral enumerations.

typedef enum logic [2:0] { ZERO = 3'b0 } pub_t /*verilator public*/;

/*verilator public*/ (variable)

Used after an input, output, register, or wire declaration to indicate the signal
should be declared so that C code may read or write the value of the signal. This
will also declare this module public, otherwise use /*verilator public_�at*/.

Instead of using public variables, consider instead making a DPI or public func-
tion that accesses the variable. This is nicer as it provides an obvious entry
point that is also compatible across simulators.

49

Verilator 4.008 20 LANGUAGE EXTENSIONS

/*verilator public*/ (task/function)

Used inside the declaration section of a function or task declaration to indicate
the function or task should be made into a C++ function, public to outside
callers. Public tasks will be declared as a void C++ function, public functions
will get the appropriate non-void (bool, uint32_t, etc) return type. Any input
arguments will become C++ arguments to the function. Any output arguments
will become C++ reference arguments. Any local registers/integers will become
function automatic variables on the stack.

Wide variables over 64 bits cannot be function returns, to avoid exposing com-
plexities. However, wide variables can be input/outputs; they will be passed as
references to an array of 32-bit numbers.

Generally, only the values of stored state (�ops) should be written, as the model
will NOT notice changes made to variables in these functions. (Same as when
a signal is declared public.)

You may want to use DPI exports instead, as it's compatible with other simu-
lators.

/*verilator public_�at*/ (variable)

Used after an input, output, register, or wire declaration to indicate the signal
should be declared so that C code may read or write the value of the signal.
This will not declare this module public, which means the name of the signal
or path to it may change based upon the module inlining which takes place.

/*verilator public_�at_rd*/ (variable)

Used after an input, output, register, or wire declaration to indicate the signal
should be declared public_�at (see above), but read-only.

/*verilator public_�at_rw @(<edge_list>) */ (variable)

Used after an input, output, register, or wire declaration to indicate the signal
should be declared public_�at_rd (see above), and also writable, where writes
should be considered to have the timing speci�ed by the given sensitivity edge
list.

/*verilator public_module*/

Used after a module statement to indicate the module should not be inlined
(unless speci�cally requested) so that C code may access the module. Verilator
automatically sets this attribute when the module contains any public signals
or `systemc_ directives. Also set for all modules when using the --public switch.

/*verilator sc_clock*/

Rarely needed. Used after an input declaration to indicate the signal should
be declared in SystemC as a sc_clock instead of a bool. This was needed in
SystemC 1.1 and 1.2 only; versions 2.0 and later do not require clock pins to
be sc_clocks and this is no longer needed.

/*verilator sc_bv*/

Used after a port declaration. It sets the port to be of sc_bv<width> type,
instead of bool, vluint32_t or vluint64_t. This may be useful if the port width
is parametrized and di�erent of such modules interface a templated module

50

Verilator 4.008 21 LANGUAGE LIMITATIONS

(such as a transactor) or for other reasons. In general you should avoid using this
attribute when not necessary as with increasing usage of sc_bv the performance
increases signi�cantly.

/*verilator sformat*/

Attached to the �nal input of a function or task "input string" to indicate
the function or task should pass all remaining arguments through $sformatf.
This allows creation of DPI functions with $display like behavior. See the
test_regress/t/t_dpi_display.v �le for an example.

/*verilator tag <text...>*/

Attached after a variable or structure member to indicate opaque (to Verilator)
text that should be passed through to the XML output as a tag, for use by
downstream applications.

/*verilator tracing_o�*/

Disable waveform tracing for all future signals that are declared in this module,
or cells below this module. Often this is placed just after a primitive's module
statement, so that the entire module and cells below it are not traced.

/*verilator tracing_on*/

Re-enable waveform tracing for all future signals or cells that are declared.

21 LANGUAGE LIMITATIONS

There are some limitations and lack of features relative to a commercial simulator,
by intent. User beware.

It is strongly recommended you use a lint tool before running this program. Verilator
isn't designed to easily uncover common mistakes that a lint program will �nd for
you.

Synthesis Subset

Verilator supports only the Synthesis subset with a few minor additions such as $stop,
$�nish and $display. That is, you cannot use hierarchical references, events or similar
features of the Verilog language. It also simulates as Synopsys's Design Compiler
would; namely a block of the form:

always @ (x) y = x & z;

This will recompute y when there is even a potential for change in x or a change in
z, that is when the �ops computing x or z evaluate (which is what Design Compiler
will synthesize.) A compliant simulator would only calculate y if x changes. Use
Verilog-Mode's /*AS*/ or Verilog 2001's always @* to reduce missing activity items.

51

Verilator 4.008 21 LANGUAGE LIMITATIONS

Avoid putting $displays in combo blocks, as they may print multiple times when not
desired, even on compliant simulators as event ordering is not speci�ed.

Signal Naming

To avoid con�icts with C symbol naming, any character in a signal name that is not
alphanumeric nor a single underscore will be replaced by __0hh where hh is the hex
code of the character. To avoid con�icts with Verilator's internal symbols, any double
underscore are replaced with ___05F (5F is the hex code of an underscore.)

Bind

Verilator only supports "bind" to a target module name, not an instance path.

Dotted cross-hierarchy references

Verilator supports dotted references to variables, functions and tasks in di�erent
modules. However, references into named blocks and function-local variables are not
supported. The portion before the dot must have a constant value; for example a[2].b
is acceptable, while a[x].b is not.

References into generated and arrayed instances use the instance names speci�ed in
the Verilog standard; arrayed instances are named {cellName}[{instanceNumber}] in
Verilog, which becomes {cellname}__BRA__{instanceNumber}__KET__ inside
the generated C++ code.

Verilator creates numbered "genblk" when a begin: name is not speci�ed around a
block inside a generate statement. These numbers may di�er between other simu-
lators, but the Verilog speci�cation does not allow users to use these names, so it
should not matter.

If you are having trouble determining where a dotted path goes wrong, note that
Verilator will print a list of known scopes to help your debugging.

Floating Point

Floating Point (real) numbers are supported.

52

Verilator 4.008 21 LANGUAGE LIMITATIONS

Latches

Verilator is optimized for edge sensitive (�op based) designs. It will attempt to do
the correct thing for latches, but most performance optimizations will be disabled
around the latch.

Structures and Unions

Verilator only presently supports packed structs and packed unions. Rand and randc
tags on members are simply ignored. All structures and unions are represented as a
single vector, which means that generating one member of a structure from blocking,
and another from non-blocking assignments is unsupported.

Time

All delays (#) are ignored, as they are in synthesis.

Unknown states

Verilator is mostly a two state simulator, not a four state simulator. However, it has
two features which uncover most initialization bugs (including many that a four state
simulator will miss.)

Identity comparisons (=== or !==) are converted to standard ==/!== when neither
side is a constant. This may make the expression result di�er from a four state
simulator. An === comparison to X will always be false, so that Verilog code which
checks for uninitialized logic will not �re.

Assigning a variable to a X will actually assign the variable to a random value (see
the --x-assign switch.) Thus if the value is actually used, the random value should
cause downstream errors. Integers also randomize, even though the Verilog 2001
speci�cation says they initialize to zero.

All variables, depending on --x-initial setting, are typically randomly initialized using
a function. By running several random simulation runs you can determine that reset
is working correctly. On the �rst run, the function initializes variables to zero. On
the second, have it initialize variables to one. On the third and following runs have
it initialize them randomly. If the results match, reset works. (Note this is what the
hardware will really do.) In practice, just setting all variables to one at startup �nds
most problems (since typically control signals are active-high).

--x-assign applies to variables explicitly initialized or assigned to X. Uninitialized
clocks are initialized to zero, while all other state holding variables are initialized
to a random value. Event driven simulators will generally trigger an edge on a

53

Verilator 4.008 21 LANGUAGE LIMITATIONS

transition from X to 1 (posedge) or X to 0 (negedge). However, by default, since
clocks are initialized to zero, Verilator will not trigger an initial negedge. Some code
(particularly for reset) may rely on X->0 triggering an edge. The --x-initial-edge
switch enables this behavior. Comparing runs with and without this switch will �nd
such problems.

Tri/Inout

Verilator converts some simple tristate structures into two state. Pullup, pulldown,
bu�f0, bu�f1, notif0, notif1, pmos, nmos, tri0 and tri1 are also supported. Simple
comparisons with === 1'bz are also supported.

An assignment of the form:

inout driver;

wire driver = (enable) ? output_value : 1'bz;

Will be converted to

input driver; // Value being driven in from "external" drivers

output driver__en; // True if driven from this module

output driver__out; // Value being driven from this module

External logic will be needed to combine these signals with any external drivers.

Tristate drivers are not supported inside functions and tasks; an inout there will
be considered a two state variable that is read and written instead of a four state
variable.

Functions & Tasks

All functions and tasks will be inlined (will not become functions in C.) The only
support provided is for simple statements in tasks (which may a�ect global variables).

Recursive functions and tasks are not supported. All inputs and outputs are auto-
matic, as if they had the Verilog 2001 "automatic" keyword prepended. (If you don't
know what this means, Verilator will do what you probably expect -- what C does.
The default behavior of Verilog is di�erent.)

Generated Clocks

Verilator attempts to deal with generated and enabled clocks correctly, however some
cases cause problems in the scheduling algorithm which is optimized for performance.

54

Verilator 4.008 21 LANGUAGE LIMITATIONS

The safest option is to have all clocks as primary inputs to the model, or wires
directly attached to primary inputs. For proper behavior clock enables may also need
the /*verilator clock_enable*/ attribute.

Ranges must be big-bit-endian

Bit ranges must be numbered with the MSB being numbered greater or the same as
the LSB. Little-bit-endian buses [0:15] are not supported as they aren't easily made
compatible with C++.

Gate Primitives

The 2-state gate primitives (and, buf, nand, nor, not, or, xnor, xor) are directly
converted to behavioral equivalents. The 3-state and MOS gate primitives are not
supported. Tables are not supported.

Specify blocks

All specify blocks and timing checks are ignored.

Array Initialization

When initializing a large array, you need to use non-delayed assignments. Verilator
will tell you when this needs to be �xed; see the BLKLOOPINIT error for more
information.

Array Out of Bounds

Writing a memory element that is outside the bounds speci�ed for the array may cause
a di�erent memory element inside the array to be written instead. For power-of-2
sized arrays, Verilator will give a width warning and the address. For non-power-of-
2-sizes arrays, index 0 will be written.

Reading a memory element that is outside the bounds speci�ed for the array will give
a width warning and wrap around the power-of-2 size. For non-power-of-2 sizes, it
will return a unspeci�ed constant of the appropriate width.

55

Verilator 4.008 21 LANGUAGE LIMITATIONS

Assertions

Verilator is beginning to add support for assertions. Verilator currently only converts
assertions to simple "if (...) error" statements, and coverage statements to increment
the line counters described in the coverage section.

Verilator does not support SEREs yet. All assertion and coverage statements must
be simple expressions that complete in one cycle. (Arguably SEREs are much of the
point, but one must start somewhere.)

Language Keyword Limitations

This section describes speci�c limitations for each language keyword.

`__FILE__, `__LINE__, `begin_keywords, `begin_keywords, `begin_keywords,
`begin_keywords, `begin_keywords, `de�ne, `else, `elsif, `end_keywords,
`endif, `error, `ifdef, `ifndef, `include, `line, `systemc_ctor, `systemc_dtor,
`systemc_header, `systemc_imp_header, `systemc_implementation,
`systemc_interface, `timescale, `undef, `verilog

Fully supported.

always, always_comb, always_�, always_latch, and, assign, begin, buf,
byte, case, casex, casez, default, defparam, do-while, else, end, end-
case, endfunction, endgenerate, endmodule, endspecify, endtask, �-
nal, for, function, generate, genvar, if, initial, inout, input, int, inte-
ger, localparam, logic, longint, macromodule, module, nand, negedge,
nor, not, or, output, parameter, posedge, reg, scalared, shortint,
signed, supply0, supply1, task, time, tri, typedef, var, vectored,
while, wire, xnor, xor

Generally supported.

++, -- operators

Increment/decrement can only be used as standalone statements or in for loops.
They cannot be used as side e�ect operators inside more complicate expressions
("a = b++;").

'{} operator

Assignment patterns with order based, default, constant integer (array) or mem-
ber identi�er (struct/union) keys are supported. Data type keys and keys which
are computed from a constant expression are not supported.

cast operator

Casting is supported only between simple scalar types, signed and unsigned,
not arrays nor structs.

chandle

Treated as a "longint"; does not yet warn about operations that are speci�ed
as illegal on chandles.

56

Verilator 4.008 21 LANGUAGE LIMITATIONS

disable

Disable statements may be used only if the block being disabled is a block the
disable statement itself is inside. This was commonly used to provide loop break
and continue functionality before SystemVerilog added the break and continue
keywords.

inside

Inside expressions may not include unpacked array traversal or $ as an upper
bound. Case inside and case matches are also unsupported.

interface

Interfaces and modports, including with generated data types are supported.
Generate blocks around modports are not supported, nor are virtual interfaces
nor unnamed interfaces.

priority if, unique if

Priority and unique if's are treated as normal ifs and not asserted to be full nor
unique.

specify specparam

All specify blocks and timing checks are ignored.

string

String is supported only to the point that they can be assigned, concatenated,
compared, and passed to DPI imports. Standard method calls on strings are
not supported.

timeunit, timeprecision

All timing control statements are ignored.

uwire

Verilator does not perform warning checking on uwires, it treats the uwire
keyword as if it were the normal wire keyword.

$bits, $countones, $error, $fatal, $�nish, $info, $isunknown, $onehot, $one-
hot0, $readmemb, $readmemh, $signed, $stime, $stop, $time, $un-
signed, $warning.

Generally supported.

$display, $write, $fdisplay, $fwrite, $swrite

$display and friends must have a constant format string as the �rst argument
(as with C's printf). The rare usage which lists variables standalone without a
format is not supported.

$displayb, $displayh, $displayo, $writeb, $writeh, $writeo, etc

The sized display functions are rarely used and so not supported. Replace them
with a $write with the appropriate format speci�er.

$�nish, $stop

The rarely used optional parameter to $�nish and $stop is ignored.

57

Verilator 4.008 22 ERRORS AND WARNINGS

$fopen, $fclose, $fdisplay, $feof, $�ush, $fgetc, $fgets, $fscanf, $fwrite

File descriptors passed to the �le PLI calls must be �le descriptors, not MCDs,
which includes the mode parameter to $fopen being mandatory.

$fscanf, $sscanf

Only integer formats are supported; %e, %f, %m, %r, %v, and %z are not
supported.

$fullskew, $hold, $nochange, $period, $recovery, $recrem, $removal, $setup,
$setuphold, $skew, $timeskew, $width

All specify blocks and timing checks are ignored.

$random

$random does not support the optional argument to set the seed. Use the srand
function in C to accomplish this, and note there is only one random number
generator (not one per module).

$readmemb, $readmemh

Read memory commands should work properly. Note Verilator and the Verilog
speci�cation does not include support for readmem to multi-dimensional arrays.

$test$plusargs, $value$plusargs

Supported, but the instantiating C++/SystemC testbench must call

Verilated::commandArgs(argc, argv);

to register the command line before calling $test$plusargs or $value$plusargs.

$timeformat

Not supported as Verilator needs to determine all formatting at compile time.
Generally you can just ifdef them out for no ill e�ect. Note also VL_TIME_MULTIPLER
can be de�ned at compile time to move the decimal point when displaying all
times, model wide.

22 ERRORS AND WARNINGS

Warnings may be disabled in three ways. First, when the warning is printed it will
include a warning code. Simply surround the o�ending line with a warn_o�/warn_on
pair:

// verilator lint_off UNSIGNED

if (`DEF_THAT_IS_EQ_ZERO <= 3) $stop;

// verilator lint_on UNSIGNED

58

Verilator 4.008 22 ERRORS AND WARNINGS

Second, warnings may be disabled using a con�guration �le with a lint_o� command.
This is useful when a script is suppressing warnings and the Verilog source should
not be changed.

Warnings may also be globally disabled by invoking Verilator with the -Wno-warning
switch. This should be avoided, as it removes all checking across the designs, and
prevents other users from compiling your code without knowing the magic set of
disables needed to successfully compile your design.

List of all warnings:

ALWCOMBORDER

Warns that an always_comb block has a variable which is set after it is used.
This may cause simulation-synthesis mismatches, as not all commercial simu-
lators allow this ordering.

always_comb begin

a = b;

b = 1;

end

Ignoring this warning will only suppress the lint check, it will simulate correctly.

ASSIGNIN

Error that an assignment is being made to an input signal. This is almost
certainly a mistake, though technically legal.

input a;

assign a = 1'b1;

Ignoring this warning will only suppress the lint check, it will simulate correctly.

ASSIGNDLY

Warns that you have an assignment statement with a delayed time in front of
it, for example:

a <= #100 b;

assign #100 a = b;

Ignoring this warning may make Verilator simulations di�er from other simula-
tors, however at one point this was a common style so disabled by default as a
code style warning.

BLKANDNBLK

BLKANDNBLK is an error that a variable comes from a mix of blocked and
non-blocking assignments. Generally, this is caused by a register driven by both
combo logic and a �op:

always @ (posedge clk) foo[0] <= ...

always @* foo[1] = ...

59

Verilator 4.008 22 ERRORS AND WARNINGS

Simply use a di�erent register for the �op:

always @ (posedge clk) foo_flopped[0] <= ...

always @* foo[0] = foo_flopped[0];

always @* foo[1] = ...

This is not illegal in SystemVerilog, but a violation of good coding practice.
Verilator reports this as an error, because ignoring this warning may make
Verilator simulations di�er from other simulators.

It is generally safe to disable this error (with a "// verilator lint_o� BLKA-
NDNBLK" metacomment or the -Wno-BLKANDNBLK option) when one of
the assignments is inside a public task, or when the blocked and non-blocking
assignments have non-overlapping bits and structure members.

BLKSEQ

This indicates that a blocking assignment (=) is used in a sequential block.
Generally non-blocking/delayed assignments (<=) are used in sequential blocks,
to avoid the possibility of simulator races. It can be reasonable to do this if
the generated signal is used ONLY later in the same block, however this style
is generally discouraged as it is error prone.

always @ (posedge clk) foo = ...

Disabled by default as this is a code style warning; it will simulate correctly.

BLKLOOPINIT

This indicates that the initialization of an array needs to use non-delayed as-
signments. This is done in the interest of speed; if delayed assignments were
used, the simulator would have to copy large arrays every cycle. (In smaller
loops, loop unrolling allows the delayed assignment to work, though it's a bit
slower than a non-delayed assignment.) Here's an example

always @ (posedge clk)

if (~reset_l) begin

for (i=0; i<`ARRAY_SIZE; i++) begin

array[i] = 0; // Non-delayed for verilator

end

This message is only seen on large or complicated loops because Verilator gen-
erally unrolls small loops. You may want to try increasing --unroll-count (and
occasionally --unroll-stmts) which will raise the small loop bar to avoid this
error.

BSSPACE

Warns that a backslash is followed by a space then a newline. Likely the intent
was to have a backslash directly followed by a newline (e.g. when making a
`de�ne) and there's accidentally whitespace at the end of the line. If the space
is not accidental, suggest removing the backslash in the code as it serves no
function.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

60

Verilator 4.008 22 ERRORS AND WARNINGS

CASEINCOMPLETE

Warns that inside a case statement there is a stimulus pattern for which there
is no case item speci�ed. This is bad style, if a case is impossible, it's better
to have a "default: $stop;" or just "default: ;" so that any design assumption
violations will be discovered in simulation.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

CASEOVERLAP

Warns that inside a case statement you have case values which are detected to
be overlapping. This is bad style, as moving the order of case values will cause
di�erent behavior. Generally the values can be respeci�ed to not overlap.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

CASEX

Warns that it is simply better style to use casez, and ? in place of x's. See
http://www.sunburst-design.com/papers/CummingsSNUG1999Boston_FullParallelCase_rev1_1.pdf

Ignoring this warning will only suppress the lint check, it will simulate correctly.

CASEWITHX

Warns that a case statement contains a constant with a x. Verilator is two-state
so interpret such items as always false. Note a common error is to use a X in a
case or casez statement item; often what the user instead intended is to use a
casez with ?.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

CDCRSTLOGIC

With --cdc only, warns that asynchronous �op reset terms come from other than
primary inputs or �opped outputs, creating the potential for reset glitches.

CLKDATA

Warns that clock signal is mixed used with/as data signal. The checking for
this warning is enabled only if user has explicitly marked some signal as clocker
using command line option or in-source meta comment (see --clk).

The warning can be disabled without a�ecting the simulation result. But it is
recommended to check the warning as this may degrade the performance of the
Verilated model.

CMPCONST

Warns that you are comparing a value in a way that will always be constant.
For example "X > 1" will always be true when X is a single bit wide.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

COLONPLUS

Warns that a :+ is seen. Likely the intent was to use +: to select a range of
bits. If the intent was a range that is explicitly positive, suggest adding a space,
e.g. use ": +".

Ignoring this warning will only suppress the lint check, it will simulate correctly.

61

Verilator 4.008 22 ERRORS AND WARNINGS

COMBDLY

Warns that you have a delayed assignment inside of a combinatorial block. Us-
ing delayed assignments in this way is considered bad form, and may lead to
the simulator not matching synthesis. If this message is suppressed, Verilator,
like synthesis, will convert this to a non-delayed assignment, which may result in
logic races or other nasties. See http://www.sunburst-design.com/papers/CummingsSNUG2000SJ_NBA_rev1_2.pdf

Ignoring this warning may make Verilator simulations di�er from other simula-
tors.

CONTASSREG

Error that a continuous assignment is setting a reg. According to IEEE Ver-
ilog, but not SystemVerilog, a wire must be used as the target of continuous
assignments.

This error is only reported when "--language 1364-1995", "--language 1364-
2001", or "--language 1364-2005" is used.

Ignoring this error will only suppress the lint check, it will simulate correctly.

DECLFILENAME

Warns that a module or other declaration's name doesn't match the �lename
with path and extension stripped that it is declared in. The �lename a mod-
ules/interfaces/programs is declared in should match the name of the module
etc. so that -y directory searching will work. This warning is printed for only
the �rst mismatching module in any given �le, and -v library �les are ignored.

Disabled by default as this is a code style warning; it will simulate correctly.

DEFPARAM

Warns that the "defparam" statement was deprecated in Verilog 2001 and all
designs should now be using the #(...) format to specify parameters.

Disabled by default as this is a code style warning; it will simulate correctly.

DETECTARRAY

Error when Verilator tries to deal with a combinatorial loop that could not be
�attened, and which involves a datatype which Verilator cannot handle, such
as an unpacked struct or a large unpacked array. This typically ocurrs when
-Wno-UNOPTFLAT has been used to override an UNOPTFLAT warning (see
below).

The solution is to break the loop, as described for UNOPTFLAT.

ENDLABEL

Warns that a label attached to a "end"-something statement does not match
the label attached to the block start.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

GENCLK

Warns that the speci�ed signal is generated, but is also being used as a clock.
Verilator needs to evaluate sequential logic multiple times in this situation. In
somewhat contrived cases having any generated clock can reduce performance
by almost a factor of two. For fastest results, generate ALL clocks outside in

62

Verilator 4.008 22 ERRORS AND WARNINGS

C++/SystemC and make them primary inputs to your Verilog model. (However
once need to you have even one, don't sweat additional ones.)

Ignoring this warning may make Verilator simulations di�er from other simula-
tors.

IFDEPTH

Warns that if/if else statements have exceeded the depth speci�ed with --if-
depth, as they are likely to result in slow priority encoders. Unique and priority
if statements are ignored. Solutions include changing the code to a case state-
ment, or a SystemVerilog 'unique if' or 'priority if'.

Disabled by default as this is a code style warning; it will simulate correctly.

IMPERFECTSCH

Warns that the scheduling of the model is not absolutely perfect, and some
manual code edits may result in faster performance. This warning defaults to
o�, is not part of -Wall, and must be turned on explicitly before the top module
statement is processed.

IMPLICIT

Warns that a wire is being implicitly declared (it is a single bit wide output
from a sub-module.) While legal in Verilog, implicit declarations only work
for single bit wide signals (not buses), do not allow using a signal before it
is implicitly declared by a cell, and can lead to dangling nets. A better op-
tion is the /*AUTOWIRE*/ feature of Verilog-Mode for Emacs, available from
http://www.veripool.org/

Ignoring this warning will only suppress the lint check, it will simulate correctly.

IMPORTSTAR

Warns that an "import package::*" statement is in $unit scope. This causes
the imported symbols to polute the global namespace, defeating much of the
purpose of having a package. Generally "import ::*" should only be used inside
a lower scope such as a package or module.

Disabled by default as this is a code style warning; it will simulate correctly.

IMPURE

Warns that a task or function that has been marked with /*verilator no_inline_task*/
references variables that are not local to the task. Verilator cannot schedule
these variables correctly.

Ignoring this warning may make Verilator simulations di�er from other simula-
tors.

INCABSPATH

Warns that an `include �lename speci�es an absolute path. This means the code
will not work on any other system with a di�erent �le system layout. Instead of
using absolute paths, relative paths (preferably without any directory speci�ed
whatever) should be used, and +incdir used on the command line to specify
the top include source directories.

Disabled by default as this is a code style warning; it will simulate correctly.

63

Verilator 4.008 22 ERRORS AND WARNINGS

INFINITELOOP

Warns that a while or for statement has a condition that is always true. and
thus result in an in�nite loop if the statement ever executes.

This might be unintended behavior if the loop body contains statements that
in other statements that would make time pass, which Verilator is ignoring due
to e.g. STMTDLY warnings being disabled.

Ignoring this warning will only suppress the lint check, it will simulate correctly
(i.e. hang due to the in�nite loop).

INITIALDLY

Warns that you have a delayed assignment inside of an initial or �nal block. If
this message is suppressed, Verilator will convert this to a non-delayed assign-
ment. See also the COMBDLY warning.

Ignoring this warning may make Verilator simulations di�er from other simula-
tors.

LITENDIAN

Warns that a packed vector is declared with little endian bit numbering (i.e.
[0:7]). Big endian bit numbering is now the overwhelming standard, and little
numbering is now thus often due to simple oversight instead of intent.

Also warns that a cell is declared with little endian range (i.e. [0:7] or [7]) and is
connected to a N-wide signal. Based on IEEE the bits will likely be backwards
from what you expect (i.e. cell [0] will connect to signal bit [N-1] not bit [0]).

Ignoring this warning will only suppress the lint check, it will simulate correctly.

MODDUP

Warns that a module has multiple de�nitions. Generally this indicates a coding
error, or a mistake in a library �le and it's good practice to have one module per
�le (and only put each �le once on the command line) to avoid these issues. For
some gate level netlists duplicates are sometimes unavoidable, and MODDUP
should be disabled.

Ignoring this warning will cause the more recent module de�nition to be dis-
carded.

MULTIDRIVEN

Warns that the speci�ed signal comes from multiple always blocks. This is often
unsupported by synthesis tools, and is considered bad style. It will also cause
longer runtimes due to reduced optimizations.

Ignoring this warning will only slow simulations, it will simulate correctly.

MULTITOP

Error that there are multiple top level modules, that is modules not instantiated
by any other module. Verilator only supports a single top level, if you need
more, create a module that wraps all of the top modules.

Often this error is because some low level cell is being read in, but is not really
needed. The best solution is to insure that each module is in a unique �le by
the same name. Otherwise, make sure all library �les are read in as libraries
with -v, instead of automatically with -y.

64

Verilator 4.008 22 ERRORS AND WARNINGS

PINCONNECTEMPTY

Warns that a cell instantiation has a pin which is connected to .pin_name(),
e.g. not another signal, but with an explicit mention of the pin. It may be
desirable to disable PINCONNECTEMPTY, as this indicates intention to have
a no-connect.

Disabled by default as this is a code style warning; it will simulate correctly.

PINMISSING

Warns that a module has a pin which is not mentioned in a cell instantiation.
If a pin is not missing it should still be speci�ed on the cell declaration with a
empty connection, using "(.pin_name())".

Ignoring this warning will only suppress the lint check, it will simulate correctly.

PINNOCONNECT

Warns that a cell instantiation has a pin which is not connected to another
signal.

Disabled by default as this is a code style warning; it will simulate correctly.

PROCASSWIRE

Error that a procedural assignment is setting a wire. According to IEEE, a
var/reg must be used as the target of procedural assignments.

REALCVT

Warns that a real number is being implicitly rounded to an integer, with possible
loss of precision.

REDEFMACRO

Warns that you have rede�ned the same macro with a di�erent value, for ex-
ample:

`define MACRO def1

//...

`define MACRO otherdef

The best solution is to use a di�erent name for the second macro. If this is not
possible, add a undef to indicate the code is overriding the value:

`define MACRO def1

//...

`undef MACRO

`define MACRO otherdef

SELRANGE

Warns that a selection index will go out of bounds:

wire vec[6:0];

initial out = vec[7]; // There is no 7

65

Verilator 4.008 22 ERRORS AND WARNINGS

Verilator will assume zero for this value, instead of X. Note that in some cases
this warning may be false, when a condition upstream or downstream of the
access means the access out of bounds will never execute or be used.

wire vec[6:0];

initial begin

seven = 7;

...

if (seven != 7) out = vec[seven]; // Never will use vec[7]

STMTDLY

Warns that you have a statement with a delayed time in front of it, for example:

#100 $finish;

Ignoring this warning may make Verilator simulations di�er from other simula-
tors.

SYMRSVDWORD

Warning that a symbol matches a C++ reserved word and using this as a symbol
name would result in odd C compiler errors. You may disable this warning, but
the symbol will be renamed by Verilator to avoid the con�ict.

SYNCASYNCNET

Warns that the speci�ed net is used in at least two di�erent always statements
with posedge/negedges (i.e. a �op). One usage has the signal in the sensitivity
list and body, probably as an async reset, and the other usage has the signal only
in the body, probably as a sync reset. Mixing sync and async resets is usually a
mistake. The warning may be disabled with a lint_o� pragma around the net,
or either �opped block.

Disabled by default as this is a code style warning; it will simulate correctly.

TASKNSVAR

Error when a call to a task or function has a output from that task tied to a
non-simple signal. Instead connect the task output to a temporary signal of the
appropriate width, and use that signal to set the appropriate expression as the
next statement. For example:

task foo; output sig; ... endtask

always @* begin

foo(bus_we_select_from[2]); // Will get TASKNSVAR error

end

Change this to:

reg foo_temp_out;

always @* begin

foo(foo_temp_out);

bus_we_select_from[2] = foo_temp_out;

end

66

Verilator 4.008 22 ERRORS AND WARNINGS

Verilator doesn't do this conversion for you, as some more complicated cases
would result in simulator mismatches.

TICKCOUNT

Warns that the number of ticks to delay a $past variable is greater than 10. At
present Verilator e�ectively creates a �op for each delayed signals, and as such
any large counts may lead to large design size increases.

Ignoring this warning will only slow simulations, it will simulate correctly.

UNDRIVEN

Warns that the speci�ed signal is never sourced. Verilator is fairly liberal in
the usage calculations; making a signal public, or loading only a single array
element marks the entire signal as driven.

Disabled by default as this is a code style warning; it will simulate correctly.

UNOPT

Warns that due to some construct, optimization of the speci�ed signal or block
is disabled. The construct should be cleaned up to improve runtime.

A less obvious case of this is when a module instantiates two submodules. Inside
submodule A, signal I is input and signal O is output. Likewise in submodule
B, signal O is an input and I is an output. A loop exists and a UNOPT warning
will result if AI & AO both come from and go to combinatorial blocks in both
submodules, even if they are unrelated always blocks. This a�ects performance
because Verilator would have to evaluate each submodule multiple times to
stabilize the signals crossing between the modules.

Ignoring this warning will only slow simulations, it will simulate correctly.

UNOPTFLAT

Warns that due to some construct, optimization of the speci�ed signal is dis-
abled. The signal speci�ed includes a complete scope to the signal; it may
be only one particular usage of a multiply instantiated block. The construct
should be cleaned up to improve runtime; two times better performance may
be possible by �xing these warnings.

Unlike the UNOPT warning, this occurs after netlist �attening, and indicates
a more basic problem, as the less obvious case described under UNOPT does
not apply.

Often UNOPTFLAT is caused by logic that isn't truly circular as viewed by
synthesis which analyzes interconnection per-bit, but is circular to simulation
which analyzes per-bus:

wire [2:0] x = {x[1:0],shift_in};

This statement needs to be evaluated multiple times, as a change in "shift_in"
requires "x" to be computed 3 times before it becomes stable. This is because
a change in "x" requires "x" itself to change value, which causes the warning.

For signi�cantly better performance, split this into 2 separate signals:

wire [2:0] xout = {x[1:0],shift_in};

67

Verilator 4.008 22 ERRORS AND WARNINGS

and change all receiving logic to instead receive "xout". Alternatively, change
it to

wire [2:0] x = {xin[1:0],shift_in};

and change all driving logic to instead drive "xin".

With this change this assignment needs to be evaluated only once. These sort
of changes may also speed up your traditional event driven simulator, as it will
result in fewer events per cycle.

The most complicated UNOPTFLAT path we've seen was due to low bits of a
bus being generated from an always statement that consumed high bits of the
same bus processed by another series of always blocks. The �x is the same;
split it into two separate signals generated from each block.

The UNOPTFLAT warning may also be due to clock enables, identi�ed from
the reported path going through a clock gating cell. To �x these, use the
clock_enable meta comment described above.

The UNOPTFLAT warning may also occur where outputs from a block of logic
are independent, but occur in the same always block. To �x this, use the
isolate_assignments meta comment described above.

To assist in resolving UNOPTFLAT, the option --report-unoptflat can be
used, which will provide suggestions for variables that can be split up, and a
graph of all the nodes connected in the loop. See the Arguments section for
more details.

Ignoring this warning will only slow simulations, it will simulate correctly.

UNOPTTHREADS

Warns that the thread scheduler was unable to partition the design to �ll the
requested number of threads.

One workaround is to request fewer threads with --threads.

Another possible workaround is to allow more MTasks in the runtime, by in-
creasing the value of --threads-max-mtasks. More MTasks will result in more
communication and synchronization overhead at runtime; the scheduler at-
tempts to minimize the number of MTasks for this reason.

Ignoring this warning will only slow simulations, it will simulate correctly.

UNPACKED

Warns that unpacked structs and unions are not supported.

Ignoring this warning will make Verilator treat the structure as packed, which
may make Verilator simulations di�er from other simulators.

UNSIGNED

Warns that you are comparing a unsigned value in a way that implies it is
signed, for example "X < 0" will always be true when X is unsigned.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

68

Verilator 4.008 22 ERRORS AND WARNINGS

UNUSED

Warns that the speci�ed signal is never sinked. Verilator is fairly liberal in the
usage calculations; making a signal public, a signal matching --unused-regexp
("*unused*") or accessing only a single array element marks the entire signal
as used.

Disabled by default as this is a code style warning; it will simulate correctly.

A recommended style for unused nets is to put at the bottom of a �le code
similar to the following:

wire _unused_ok = &{1'b0,

sig_not_used_a,

sig_not_used_yet_b, // To be fixed

1'b0};

The reduction AND and constant zeros mean the net will always be zero, so
won't use simulation time. The redundant leading and trailing zeros avoid
syntax errors if there are no signals between them. The magic name "unused"
(-unused-regexp) is recognized by Verilator and suppresses warnings; if using
other lint tools, either teach to tool to ignore signals with "unused" in the name,
or put the appropriate lint_o� around the wire. Having unused signals in one
place makes it easy to �nd what is unused, and reduces the number of lint_o�
pragmas, reducing bugs.

USERINFO, USERWARN, USERERROR, USERFATAL

A SystemVerilog elaboration-time assertion print was executed.

VARHIDDEN

Warns that a task, function, or begin/end block is declaring a variable by the
same name as a variable in the upper level module or begin/end block (thus
hiding the upper variable from being able to be used.) Rename the variable to
avoid confusion when reading the code.

Disabled by default as this is a code style warning; it will simulate correctly.

WIDTH

Warns that based on width rules of Verilog, two operands have di�erent widths.
Verilator generally can intuit the common usages of widths, and you shouldn't
need to disable this message like you do with most lint programs. Generally
other than simple mistakes, you have two solutions:

If it's a constant 0 that's 32 bits or less, simply leave it unwidthed. Verilator
considers zero to be any width needed.

Concatenate leading zeros when doing arithmetic. In the statement

wire [5:0] plus_one = from[5:0] + 6'd1 + carry[0];

The best �x, which clari�es intent and will also make all tools happy is:

wire [5:0] plus_one = from[5:0] + 6'd1 + {5'd0,carry[0]};

69

Verilator 4.008 22 ERRORS AND WARNINGS

Ignoring this warning will only suppress the lint check, it will simulate correctly.

WIDTHCONCAT

Warns that based on width rules of Verilog, a concatenate or replication has an
indeterminate width. In most cases this violates the Verilog rule that widths
inside concatenates and replicates must be sized, and should be �xed in the
code.

wire [63:0] concat = {1,2};

An example where this is technically legal (though still bad form) is:

parameter PAR = 1;

wire [63:0] concat = {PAR,PAR};

The correct �x is to either size the 1 ("32'h1"), or add the width to the param-
eter de�nition ("parameter [31:0]"), or add the width to the parameter usage
("{PAR[31:0],PAR[31:0]}".

The following describes the less obvious errors:

Internal Error

This error should never occur �rst, though may occur if earlier warnings or
error messages have corrupted the program. If there are no other warnings or
errors, submit a bug report.

Unsupported:

This error indicates that you are using a Verilog language construct that is not
yet supported in Verilator. See the Limitations chapter.

Verilated model didn't converge

Verilator sometimes has to evaluate combinatorial logic multiple times, usually
around code where a UNOPTFLAT warning was issued, but disabled. For
example:

always @ (a) b=~a;

always @ (b) a=b

will toggle forever and thus the executable will give the didn't converge error
to prevent an in�nite loop.

To debug this, �rst is to review any UNOPTFLAT warnings that were ignored,
though typically these can be ignored (at a performance cost), convergence
issues can also be �agged with this warning as Verilator didn't know if they
would eventually converge.

Next, run Verilator with --prof-cfuncs. Run make on the generated �les with
"OPT=-DVL_DEBUG". Then call Verilated::debug(1) in your main.cpp.

This will cause each change in a variable to print a message. Near the bottom
you'll see the variables that causes the problem. For the program above:

70

Verilator 4.008 23 FAQ/FREQUENTLY ASKED QUESTIONS

CHANGE: filename.v:1: b

CHANGE: filename.v:2: a

If many signals are getting printed then most likely each are oscillating (or there
is a bug). It may also be that e.g. "a" may be oscillating, then "a" feeds signal
"c" which then is also reported as oscillating.

Finally, rare more di�cult cases can be debugged like a "C" program; either
enter GDB and use its tracing facilities, or edit the generated C++ code to add
appropriate prints to see what is going on.

23 FAQ/FREQUENTLY ASKED QUESTIONS

Does it run under Windows?

Yes, using Cygwin. Verilated output also compiles under Microsoft Visual C++
Version 7 or newer, but this is not tested every release.

Can you provide binaries?

Verilator is available as a RPM for Debian/Ubuntu, SuSE, Fedora, and perhaps
other systems; this is done by porters and may slightly lag the primary distri-
bution. If there isn't a binary build for your distribution, how about you set
one up? Please contact the authors for assistance.

Note people sometimes request binaries when they are having problems with
their C++ compiler. Alas, binaries won't help this, as in the end a fully working
C++ compiler is required to compile the output of Verilator.

How can it be faster than (name-the-commercial-simulator)?

Generally, the implied part is of the question is "... with all of the manpower
they can put into developing it."

Most commercial simulators have to be Verilog compliant, meaning event driven.
This prevents them from being able to reorder blocks and make netlist-style op-
timizations, which are where most of the gains come from.

Non-compliance shouldn't be scary. Your synthesis program isn't compliant, so
your simulator shouldn't have to be -- and Verilator is closer to the synthesis
interpretation, so this is a good thing for getting working silicon.

Will Verilator output remain under my own license?

Yes, it's just like using GCC on your programs; this is why Verilator uses the
"GNU *Lesser* Public License Version 3" instead of the more typical "GNU
Public License". See the licenses for details, but in brief, if you change Verilator
itself or the header �les Verilator includes, you must make the source code
available under the GNU Lesser Public License. However, Verilator output
(the Verilated code) only "include"s the licensed �les, and so you are NOT
required to release any output from Verilator.

You also have the option of using the Perl Artistic License, which again does
not require you release your Verilog or generated code, and also allows you to
modify Verilator for internal use without distributing the modi�ed version. But
please contribute back to the community!

71

Verilator 4.008 23 FAQ/FREQUENTLY ASKED QUESTIONS

One limit is that you cannot under either license release a commercial Ver-
ilog simulation product incorporating Verilator without making the source code
available.

As is standard with Open Source, contributions back to Verilator will be placed
under the Verilator copyright and LGPL/Artistic license. Small test cases will
be released into the public domain so they can be used anywhere, and large
tests under the LGPL/Artistic, unless requested otherwise.

Why is Verilation so slow?

Verilator needs more memory than the resulting simulator will require, as Ver-
ilator creates internally all of the state of the resulting generated simulator in
order to optimize it. If it takes more than a minute or so (and you're not using
--debug since debug is disk bound), see if your machine is paging; most likely
you need to run it on a machine with more memory. Verilator is a full 64-
bit application and may use more than 4GB, but about 1GB is the maximum
typically needed, and very large commercial designs have topped 16GB.

How do I generate waveforms (traces) in C++?

See the next question for tracing in SystemC mode.

Add the --trace switch to Verilator, and in your top level C code, call Ver-
ilated::traceEverOn(true). Then create a VerilatedVcdC object, and in your
main loop call "trace_object->dump(time)" every time step, and �nally call
"trace_object->close()". For an example, see below and the examples/tracing_c/sim_main.cpp
�le of the distribution.

You also need to compile verilated_vcd_c.cpp and add it to your link, prefer-
ably by adding the dependencies in $(VK_GLOBAL_OBJS) to your Make�le's
link rule. This is done for you if using the Verilator --exe �ag.

Note you can also call ->trace on multiple Verilated objects with the same trace
�le if you want all data to land in the same output �le.

#include "verilated_vcd_c.h"

...

int main(int argc, char** argv, char** env) {

...

Verilated::traceEverOn(true);

VerilatedVcdC* tfp = new VerilatedVcdC;

topp->trace(tfp, 99);

tfp->open("obj_dir/t_trace_ena_cc/simx.vcd");

...

while (sc_time_stamp() < sim_time && !Verilated::gotFinish()) {

main_time += #;

tfp->dump(main_time);

}

tfp->close();

}

How do I generate waveforms (traces) in SystemC?

Add the --trace switch to Verilator, and in your top level C sc_main code, in-
clude verilated_vcd_sc.h. Then call Verilated::traceEverOn(true). Then create

72

Verilator 4.008 23 FAQ/FREQUENTLY ASKED QUESTIONS

a VerilatedVcdSc object as you would create a normal SystemC trace �le. For an
example, see the call to VerilatedVcdSc in the examples/tracing_sc/sc_main.cpp
�le of the distribution, and below.

Alternatively you may use the C++ trace mechanism described in the previous
question, however the timescale and timeprecision will not inherited from your
SystemC settings.

You also need to compile verilated_vcd_sc.cpp and verilated_vcd_c.cpp and
add them to your link, preferably by adding the dependencies in $(VK_GLOBAL_OBJS)
to your Make�le's link rule. This is done for you if using the Verilator --exe
�ag.

Note you can also call ->trace on multiple Verilated objects with the same trace
�le if you want all data to land in the same output �le.

#include "verilated_vcd_sc.h"

...

int main(int argc, char** argv, char** env) {

...

Verilated::traceEverOn(true);

VerilatedVcdSc* tfp = new VerilatedVcdSc;

topp->trace(tfp, 99);

tfp->open("obj_dir/t_trace_ena_cc/simx.vcd");

...

sc_start(1);

...

tfp->close();

}

How do I generate FST waveforms (traces) in C++?

FST a format by GTKWave. This version provides a basic FST support. To
dump FST format, add the --trace switch to Verilator and change the include
path in the testbench to:

#include "verilated_fst_c.h"

VerilatedFstC* tfp = new VerilatedFstC;

Note that currently supporting both FST and VCD in a single simulation is
impossible, but such requirement could be rare.

How do I generate FST waveforms (traces) in SystemC?

The FST library from GTKWave does not currently support SystemC; use VCD
format instead.

How do I generate LXT2 waveforms (traces) in C++?

LXT2 a format by GTKWave, which is usually 10x smaller than VCD format.
This version provides a basic LXT2 support. To dump LXT2 format, add the
--trace switch to Verilator and change the include path in the testbench to:

#include "verilated_lxt2_c.h"

VerilatedLxt2C* tfp = new VerilatedLxt2C;

73

Verilator 4.008 23 FAQ/FREQUENTLY ASKED QUESTIONS

Note that currently supporting both LXT2 and VCD in a single simulation is
impossible, but such requirement could be rare.

How do I generate LXT2 waveforms (traces) in SystemC?

The LXT2 library from GTKWave does not currently support SystemC; use
VCD format instead.

How do I view waveforms (traces)?

Verilator makes standard VCD (Value Change Dump), LXT2 and FST �les.
VCD �les are viewable with the public domain GTKWave (recommended) or
Dinotrace (legacy) programs, or any of the many commercial o�erings; LXT2
and FST are supported by GTKWave only.

How do I reduce the size of large waveform (trace) �les?

First, instead of calling VerilatedVcdC->open at the beginning of time, delay
calling it until the time stamp where you want to tracing to begin. Likewise
you can also call VerilatedVcdC->open before the end of time (perhaps a short
period after you detect a veri�cation error.)

Next, add /*verilator tracing_o�*/ to any very low level modules you never
want to trace (such as perhaps library cells). Finally, use the --trace-depth
option to limit the depth of tracing, for example --trace-depth 1 to see only the
top level signals.

Also be sure you write your trace �les to a local solid-state disk, instead of to
a network disk. Network disks are generally far slower.

How do I do coverage analysis?

Verilator supports both block (line) coverage and user inserted functional cov-
erage.

First, run verilator with the --coverage option. If you're using your own make�le,
compile the model with the GCC �ag -DVM_COVERAGE (if using Verilator's,
it will do this for you.)

At the end of your test, call VerilatedCov::write passing the name of the coverage
data �le (typically "logs/coverage.dat").

Run each of your tests in di�erent directories. Each test will create a logs/coverage.dat
�le.

After running all of your tests, verilator_coverage is executed. Verilator_coverage
reads the logs/coverage.dat �le(s), and creates an annotated source code listing
showing code coverage details.

For an example, after running 'make test' in the Verilator distribution, see the
examples/tracing_c/logs directory. Grep for lines starting with '%' to see what
lines Verilator believes need more coverage.

Where is the translate_o� command? (How do I ignore a construct?)

Translate on/o� pragmas are generally a bad idea, as it's easy to have mis-
matched pairs, and you can't see what another tool sees by just preprocessing
the code. Instead, use the preprocessor; Verilator de�nes the "VERILATOR"
de�ne for you, so just wrap the code in an ifndef region:

74

Verilator 4.008 23 FAQ/FREQUENTLY ASKED QUESTIONS

`ifndef VERILATOR

Something_Verilator_Dislikes;

`endif

Most synthesis tools similarly de�ne SYNTHESIS for you.

Why do I get "unexpected `do'" or "unexpected `bit'" errors?

Do, bit, ref, return, and other words are now SystemVerilog keywords. You
should change your code to not use them to insure it works with newer tools. Al-
ternatively, surround them by the Verilog 2005/SystemVerilog begin_keywords
pragma to indicate Verilog 2001 code.

`begin_keywords "1364-2001"

integer bit; initial bit = 1;

`end_keywords

If you want the whole �le to be parsed as Verilog 2001, just create a �le with

`begin_keywords "1364-2001"

and add it before other Verilog �les on the command line. (Note this will also
change the default for --pre�x, so if you're not using --pre�x, you will now need
to.)

How do I prevent my assertions from �ring during reset?

Call Verilated::assertOn(false) before you �rst call the model, then turn it back
on after reset. It defaults to true. When false, all assertions controlled by
--assert are disabled.

Why do I get "unde�ned reference to `sc_time_stamp()'"?

In C++ (non SystemC) code you need to de�ne this function so that the sim-
ulator knows the current time. See the "CONNECTING TO C++" examples.

Why do I get "unde�ned reference to `VL_RAND_RESET_I' or `Veri-
lated::...'"?

You need to link your compiled Verilated code against the verilated.cpp �le
found in the include directory of the Verilator kit. This is one target in the
$(VK_GLOBAL_OBJS) make variable, which should be part of your Make-
�le's link rule. If you use --exe, this is done for you.

Is the PLI supported?

Only somewhat. More speci�cally, the common PLI-ish calls $display, $�nish,
$stop, $time, $write are converted to C++ equivalents. You can also use the
"import DPI" SystemVerilog feature to call C code (see the chapter above).
There is also limited VPI access to public signals.

If you want something more complex, since Verilator emits standard C++
code, you can simply write your own C++ routines that can access and mod-
ify signal values without needing any PLI interface code, and call it with
$c("{any_c++_statement}").

75

Verilator 4.008 23 FAQ/FREQUENTLY ASKED QUESTIONS

How do I make a Verilog module that contain a C++ object?

You need to add the object to the structure that Verilator creates, then use $c
to call a method inside your object. The test_regress/t/t_extend_class �les
show an example of how to do this.

How do I get faster build times?

Use a recent compiler. Newer compilers tend do be faster, with the now rela-
tively old GCC 3.0 to 3.3 being horrible.

Compile in parallel on many machines and use caching; see the web for the
ccache, distcc and icecream packages. ccache will skip GCC runs between iden-
tical source builds, even across di�erent users. You can use the OBJCACHE
environment variable to use these CC wrappers. Also see the --output-split
option.

To reduce the compile time of classes that use a Verilated module (e.g. a top
CPP �le) you may wish to add /*verilator no_inline_module*/ to your top
level module. This will decrease the amount of code in the model's Verilated
class, improving compile times of any instantiating top level C++ code, at a
relatively small cost of execution performance.

Why do so many �les need to recompile when I add a signal?

Adding a new signal requires the symbol table to be recompiled. Verilator uses
one large symbol table, as that results in 2-3 less assembly instructions for each
signal access. This makes the execution time 10-15% faster, but can result in
more compilations when something changes.

How do I access functions/tasks in C?

Use the SystemVerilog Direct Programming Interface. You write a Verilog func-
tion or task with input/outputs that match what you want to call in with C.
Then mark that function as an external function. See the DPI chapter in the
manual.

How do I access signals in C?

The best thing is to make a SystemVerilog "export DPI task" or function that
accesses that signal, as described in the DPI chapter in the manual and DPI
tutorials on the web. This will allow Verilator to better optimize the model and
should be portable across simulators.

If you really want raw access to the signals, declare the signals you will be
accessing with a /*verilator public*/ comment before the closing semicolon.
Then scope into the C++ class to read the value of the signal, as you would
any other member variable.

Signals are the smallest of 8-bit chars, 16-bit shorts, 32-bit longs, or 64-bit long
longs that �ts the width of the signal. Generally, you can use just uint32_t's
for 1 to 32 bits, or vluint64_t for 1 to 64 bits, and the compiler will properly
up-convert smaller entities.

Signals wider than 64 bits are stored as an array of 32-bit uint32_t's. Thus
to read bits 31:0, access signal[0], and for bits 63:32, access signal[1]. Unused
bits (for example bit numbers 65-96 of a 65-bit vector) will always be zero. if
you change the value you must make sure to pack zeros in the unused bits or

76

Verilator 4.008 24 BUGS

core-dumps may result. (Because Verilator strips array bound checks where it
believes them to be unnecessary.)

In the SYSTEMC example above, if you had in our.v:

input clk /*verilator public*/;

// Note the placement of the semicolon above

From the sc_main.cpp �le, you'd then:

#include "Vour.h"

#include "Vour_our.h"

cout << "clock is " << top->our->clk << endl;

In this example, clk is a bool you can read or set as any other variable. The
value of normal signals may be set, though clocks shouldn't be changed by your
code or you'll get strange results.

Should a module be in Verilog or SystemC?

Sometimes there is a block that just interconnects cells, and have a choice as
to if you write it in Verilog or SystemC. Everything else being equal, best
performance is when Verilator sees all of the design. So, look at the hierarchy
of your design, labeling cells as to if they are SystemC or Verilog. Then:

A module with only SystemC cells below must be SystemC.

A module with a mix of Verilog and SystemC cells below must be SystemC.
(As Verilator cannot connect to lower-level SystemC cells.)

A module with only Verilog cells below can be either, but for best performance
should be Verilog. (The exception is if you have a design that is instantiated
many times; in this case Verilating one of the lower modules and instantiating
that Verilated cells multiple times into a SystemC module *may* be faster.)

24 BUGS

First, check the the coding limitations section.

Next, try the --debug switch. This will enable additional internal assertions, and may
help identify the problem.

Finally, reduce your code to the smallest possible routine that exhibits the bug. Even
better, create a test in the test_regress/t directory, as follows:

cd test_regress

cp -p t/t_EXAMPLE.pl t/t_BUG.pl

cp -p t/t_EXAMPLE.v t/t_BUG.v

There are many hits on how to write a good test in the driver.pl documentation which
can be seen by running:

77

Verilator 4.008 25 HISTORY

cd $VERILATOR_ROOT # Need the original distribution kit

test_regress/driver.pl --help

Edit t/t_BUG.pl to suit your example; you can do anything you want in the Verilog
code there; just make sure it retains the single clk input and no outputs. Now, the
following should fail:

cd $VERILATOR_ROOT # Need the original distribution kit

cd test_regress

t/t_BUG.pl # Run on Verilator

t/t_BUG.pl --debug # Run on Verilator, passing --debug to Verilator

t/t_BUG.pl --vcs # Run on a commercial simulator

t/t_BUG.pl --nc|--iv|--ghdl # Likewise on other simulators

The test driver accepts a number of options, many of which mirror the main Verilator
option. For example the previous test could have been run with debugging enabled.
The full set of test options can be seen by running driver.pl --help as shown above.

Finally, report the bug using the bug tracker at http://www.veripool.org/verilator.
The bug will become publicly visible; if this is unacceptable, mail the bug report to
wsnyder@wsnyder.org.

25 HISTORY

Verilator was conceived in 1994 by Paul Wasson at the Core Logic Group at Digital
Equipment Corporation. The Verilog code that was converted to C was then merged
with a C based CPU model of the Alpha processor and simulated in a C based
environment called CCLI.

In 1995 Verilator started being used also for Multimedia and Network Processor
development inside Digital. Duane Galbi took over active development of Verilator,
and added several performance enhancements. CCLI was still being used as the shell.

In 1998, through the e�orts of existing DECies, mainly Duane Galbi, Digital gra-
ciously agreed to release the source code. (Subject to the code not being resold,
which is compatible with the GNU Public License.)

In 2001, Wilson Snyder took the kit, and added a SystemC mode, and called it
Verilator2. This was the �rst packaged public release.

In 2002, Wilson Snyder created Verilator 3.000 by rewriting Verilator from scratch in
C++. This added many optimizations, yielding about a 2-5x performance gain.

In 2009, major SystemVerilog and DPI language support was added.

In 2018, Verilator 4.000 was released with multithreaded support.

78

Verilator 4.008 27 CONTRIBUTORS

Currently, various language features and performance enhancements are added as the
need arises. Verilator is now about 3x faster than in 2002, and is faster than many
popular commercial simulators.

26 AUTHORS

When possible, please instead report bugs to http://www.veripool.org/.

Wilson Snyder <wsnyder@wsnyder.org>

Major concepts by Paul Wasson, Duane Galbi, John Coiner and Jie Xu.

27 CONTRIBUTORS

Many people have provided ideas and other assistance with Verilator.

The major corporate sponsors of Verilator, by providing signi�cant contributions of
time or funds include include Atmel Corporation, Cavium Inc., Compaq Corporation,
Digital Equipment Corporation, Embecosm Ltd., Hicamp Systems, Intel Corporation,
Mindspeed Technologies Inc., MicroTune Inc., picoChip Designs Ltd., Sun Microsys-
tems Inc., Nauticus Networks Inc., and SiCortex Inc.

The people who have contributed major functionality are Byron Bradley, Jeremy
Bennett, Jie Xu, Lane Brooks, John Coiner, Duane Galbi, Paul Wasson, and Wilson
Snyder. Major testers included Je� Dutton, Jonathon Donaldson, Ralf Karge, David
Hewson, Iztok Jeras, Wim Michiels, Alex Solomatnikov, Sebastien Van Cauwen-
berghe, Gene Weber, and Cli�ord Wolf.

Some of the people who have provided ideas and feedback for Verilator include:
Ahmed El-Mahmoudy, David Addison, Tariq B. Ahmad, Nikana Anastasiadis, Hans
Van Antwerpen, Vasu Arasanipalai, Jens Arm, Sharad Bagri, Andrew Bardsley,
Matthew Barr, Geo� Barrett, Julius Baxter, Jeremy Bennett, Michael Berman, Vic-
tor Besyakov, David Binderman, Johan Bjork, David Black, Tymoteusz Blazejczyk,
Daniel Bone, Gregg Bouchard, Christopher Boumenot, Nick Bowler, Byron Bradley,
Bryan Brady, Charlie Brej, J Briquet, Lane Brooks, John Brownlee, Je� Bush,
Lawrence Butcher, Ted Campbell, Chris Candler, Lauren Carlson, Donal Casey, Se-
bastien Van Cauwenberghe, Terry Chen, Enzo Chi, Robert A. Clark, Allan Cochrane,
John Coiner, Laurens van Dam, Gunter Dannoritzer, Ashutosh Das, Bernard Dead-
man, John Demme, Mike Denio, John Deroo, Philip Derrick, Joe DErrico, John
Dickol, Ruben Diez, Danny Ding, Ivan Djordjevic, Jonathon Donaldson, Sebastian
Dressler, Alex Duller, Je� Dutton, Usuario Eda, Chandan Egbert, Joe Eiler, Ahmed
El-Mahmoudy, Trevor Elbourne, Robert Farrell, Eugen Fekete, Fabrizio Ferrandi,
Brian Flachs, Andrea Foletto, Bob Fredieu, Duane Galbi, Christian Gelinek, Glen
Gibb, Shankar Giri, Dan Gisselquist, Sam Gladstone, Amir Gonnen, Chitlesh Goorah,
Xuan Guo, Neil Hamilton, Jannis Harder, Junji Hashimoto, Thomas Hawkins, Robert

79

Verilator 4.008 28 DISTRIBUTION

Henry, David Hewson, Jamey Hicks, Joel Holdsworth, Hiroki Honda, Alex Hor-
nung, David Horton, Jae Hossell, Alan Hunter, James Hutchinson, Jamie Iles, Ben
Jackson, Shareef Jalloq, Krzysztof Jankowski, HyungKi Jeong, Iztok Jeras, James
Johnson, Christophe Joly, Franck Jullien, James Jung, Mike Kagen, Arthur Kahlich,
Kaalia Kahn, Guy-Armand Kamendje, Vasu Kandadi, Patricio Kaplan, Ralf Karge,
Dan Katz, Sol Katzman, Jonathan Kimmitt, Olof Kindgren, Dan Kirkham, Sobhan
Klnv, Gernot Koch, Soon Koh, Steve Kolecki, Brett Koonce, Wojciech Koszek, Varun
Koyyalagunta, David Kravitz, Roland Kruse, Sergey Kvachonok, Ed Lander, Steve
Lang, Stephane Laurent, Walter Lavino, Christian Leber, Igor Lesik, John Li, Eivind
Liland, Yu Sheng Lin, Charlie Lind, Andrew Ling, Paul Liu, Derek Lockhart, Arthur
Low, Stefan Ludwig, Dan Lussier, Fred Ma, Duraid Madina, Julien Margetts, Mark
Marshall, Alfonso Martinez, Yves Mathieu, Patrick Maupin, Jason McMullan, Elliot
Mednick, Wim Michiels, Miodrag Milanovic, Wai Sum Mong, Sean Moore, Dennis
Muhlestein, John Murphy, Richard Myers, Dimitris Nalbantis, Bob Newgard, Cong
Van Nguyen, Paul Nitza, Pete Nixon, Lisa Noack, Mark Nodine, Andreas Olofsson,
James Pallister, Brad Parker, Maciej Piechotka, David Pierce, Dominic Plunkett,
David Poole, Mike Popoloski, Rich Porter, Niranjan Prabhu, Usha Priyadharshini,
Mark Jackson Pulver, Prateek Puri, Marshal Qiao, Chris Randall, Anton Rapp, Josh
Redford, Odd Magne Reitan, Frederic Requin, Alberto Del Rio, Oleg Rodionov, Paul
Rolfe, Arjen Roodselaar, Jan Egil Ruud, John Sanguinetti, Galen Seitz, Salman
Sheikh, Mike Shinkarovsky, Rafael Shirakawa, Je�rey Short, Rodney Sinclair, Steven
Slatter, Brian Small, Wilson Snyder, Alex Solomatnikov, Wei Song, Art Stamness,
John Stevenson, Patrick Stewart, Rob Stoddard, Todd Strader, John Stroebel, Sven
Stucki, Emerson Suguimoto, Gene Sullivan, Renga Sundararajan, Yutetsu Takat-
sukasa, Peter Tengstrand, Wesley Terpstra, Rui Terra, Stefan Thiede, Gary Thomas,
Kevin Thompson, Ian Thompson, Mike Thyer, Hans Tichelaar, Steve Tong, Michael
Tresidder, Holger Waechtler, Stefan Wallentowitz, Shawn Wang, Paul Wasson, Greg
Waters, Thomas Watts, Eugene Weber, David Welch, Thomas J Whatson, Leon
Wildman, Gerald Williams, Trevor Williams, Je� Winston, Joshua Wise, Cli�ord
Wolf, Johan Wouters, Junyi Xi, Ding Xiaoliang, Jie Xu, Mandy Xu, Luke Yang, and
Amir Yazdanbakhsh.

Thanks to them, and all those we've missed including above, or wished to remain
anonymous.

28 DISTRIBUTION

The latest version is available from http://www.veripool.org/.

Copyright 2003-2018 byWilson Snyder. Verilator is free software; you can redistribute
it and/or modify the Verilator internals under the terms of either the GNU Lesser
General Public License Version 3 or the Perl Artistic License Version 2.0.

80

Verilator 4.008 29 SEE ALSO

29 SEE ALSO

verilator_coverage, verilator_gantt, verilator_profcfunc, make,

verilator --help which is the source for this document,

and internals.txt in the distribution.

81

	1 NAME
	2 SYNOPSIS
	3 DESCRIPTION
	4 ARGUMENT SUMMARY
	5 VERILATION ARGUMENTS
	6 RUNTIME ARGUMENTS
	7 EXAMPLE C++ EXECUTION
	8 EXAMPLE SYSTEMC EXECUTION
	9 BENCHMARKING & OPTIMIZATION
	10 FILES
	11 ENVIRONMENT
	12 CONNECTING TO C++
	13 CONNECTING TO SYSTEMC
	14 DIRECT PROGRAMMING INTERFACE (DPI)
	15 VERIFICATION PROCEDURAL INTERFACE (VPI)
	16 CROSS COMPILATION
	17 MULTITHREADING
	18 CONFIGURATION FILES
	19 LANGUAGE STANDARD SUPPORT
	20 LANGUAGE EXTENSIONS
	21 LANGUAGE LIMITATIONS
	22 ERRORS AND WARNINGS
	23 FAQ/FREQUENTLY ASKED QUESTIONS
	24 BUGS
	25 HISTORY
	26 AUTHORS
	27 CONTRIBUTORS
	28 DISTRIBUTION
	29 SEE ALSO

