
Verilator 4.010 Internals Manual

http://www.veripool.org

2019-01-27

1

Verilator 4.010 Internals Manual CONTENTS

Contents

1 NAME 2

2 INTRODUCTION 2

3 CODE FLOWS 2

4 CODING CONVENTIONS 9

5 TESTING 12

6 DEBUGGING 15

7 ADDING A NEW FEATURE 19

8 DISTRIBUTION 19

1

Verilator 4.010 Internals Manual 3 CODE FLOWS

1 NAME

Verilator Internals

2 INTRODUCTION

This �le discusses internal and programming details for Verilator. It's the �rst for
reference for developers and debugging problems.

See also the Verilator internals presentation at http://www.veripool.org.

3 CODE FLOWS

Verilator Flow

The main �ow of Verilator can be followed by reading the Verilator.cpp process()
function:

First, the �les speci�ed on the command line are read. Reading involves prepro-
cessing, then lexical analysis with Flex and parsing with Bison. This produces an
abstract syntax tree (AST) representation of the design, which is what is visible in
the .tree �les described below.

Verilator then makes a series of passes over the AST, progressively re�ning and op-
timizing it.

Cells in the AST �rst linked, which will read and parse additional �les as above.

Functions, variable and other references are linked to their de�nitions.

Parameters are resolved and the design is elaborated.

Verilator then performs many additional edits and optimizations on the hierarchical
design. This includes coverage, assertions, X elimination, inlining, constant propaga-
tion, and dead code elimination.

References in the design are then pseudo-�attened. Each module's variables and
functions get "Scope" references. A scope reference is an occurrence of that un-
�attened variable in the �attened hierarchy. A module that occurs only once in the
hierarchy will have a single scope and single VarScope for each variable. A module
that occurs twice will have a scope for each occurrence, and two VarScopes for each
variable. This allows optimizations to proceed across the �attened design, while still
preserving the hierarchy.

2

Verilator 4.010 Internals Manual 3 CODE FLOWS

Additional edits and optimizations proceed on the pseudo-�at design. These include
module references, function inlining, loop unrolling, variable lifetime analysis, lookup
table creation, always splitting, and logic gate simpli�cations (pushing inverters, etc).

Verilator orders the code. Best case, this results in a single "eval" function which has
all always statements �owing from top to bottom with no loops.

Verilator mostly removes the �attening, so that code may be shared between multiple
invocations of the same module. It localizes variables, combines identical functions,
expands macros to C primitives, adds branch prediction hints, and performs addi-
tional constant propagation.

Verilator �nally writes the C++ modules.

Key Classes Used in the Verilator Flow

AstNode

The AST is represented at the top level by the class AstNode. This abstract
class has derived classes for the individual components (e.g. AstGenerate for a
generate block) or groups of components (e.g. AstNodeFTask for functions and
tasks, which in turn has AstFunc and AstTask as derived classes).

Each AstNode has pointers to up to four children, accessed by the op1p through
op4p methods. These methods are then abstracted in a speci�c Ast* node class
to a more speci�c name. For example with the AstIf node (for if statements),
ifsp calls op2p to give the pointer to the AST for the "then" block, while
elsesp calls op3p to give the pointer to the AST for the "else" block, or NULL
if there is not one.

AstNode has the concept of a next and previous AST - for example the next
and previous statements in a block. Pointers to the AST for these statements
(if they exist) can be obtained using the back and next methods.

It is useful to remember that the derived class AstNetlist is at the top of the
tree, so checking for this class is the standard way to see if you are at the top
of the tree.

By convention, each function/method uses the variable nodep as a pointer to
the AstNode currently being processed.

AstNVisitor

The passes are implemented by AST visitor classes (see Visitor Functions). These
are implemented by subclasses of the abstract class, AstNVisitor. Each pass
creates an instance of the visitor class, which in turn implements a method to
perform the pass.

V3Graph

A number of passes use graph algorithms, and the class V3Graph is provided
to represent those graphs. Graphs are directed, and algorithms are provided
to manipulate the graphs and to output them in GraphViz dot format (see
http://www.graphviz.org/). V3Graph.h provides documentation of this class.

3

Verilator 4.010 Internals Manual 3 CODE FLOWS

V3GraphVertex

This is the base class for vertices in a graph. Vertices have an associated fanout,
color and rank, which may be used in algorithms for ordering the graph. A
generic user/userp member variable is also provided.

Virtual methods are provided to specify the name, color, shape and style to be
used in dot output. Typically users provide derived classes from V3GraphVertex

which will reimplement these methods.

Iterators are provided to access in and out edges. Typically these are used in
the form:

for (V3GraphEdge *edgep = vertexp->inBeginp();

edgep;

edgep = edgep->inNextp()) {

V3GraphEdge

This is the base class for directed edges between pairs of vertices. Edges have
an associated weight and may also be made cutable. A generic user/userp
member variable is also provided.

Accessors, fromp and top return the "from" and "to" vertices respectively.

Virtual methods are provided to specify the label, color and style to be used in
dot output. Typically users provided derived classes from V3GraphEdge which
will reimplement these methods.

V3GraphAlg

This is the base class for graph algorithms. It implements a bool method,
followEdge which algorithms can use to decide whether an edge is followed.
This method returns true if the graph edge has weight greater than one and a
user function, edgeFuncp (supplied in the constructor) returns true.

A number of prede�ned derived algorithm classes and access methods are pro-
vided and documented in V3GraphAlg.cpp.

Multithreaded Mode

In --threads mode, the frontend of the Verilator pipeline is the same as serial mode,
up until V3Order.

V3Order builds a �ne-grained, statement-level dependency graph that governs the
ordering of code within a single eval() call. In serial mode, that dependency graph
is used to order all statements into a total serial order. In parallel mode, the same
dependency graph is the starting point for a partitioner (V3Partition).

The partitioner's goal is to coarsen the �ne-grained DAG into a coarser DAG, while
maintaining as much available parallelism as possible. Often the partitioner can
transform an input graph with millions of nodes into a coarsened execution graph
with a few dozen nodes, while maintaining enough parallelism to take advantage of a
modern multicore CPU. Runtime synchronization cost is not prohibitive with so few
nodes.

4

Verilator 4.010 Internals Manual 3 CODE FLOWS

Partitioning

Our partitioner is similar to the one Vivek Sarkar described in his 1989 paper "Par-
titioning and Scheduling Parallel Programs for Multiprocessors".

Let's de�ne some terms:

Par Factor

The available parallelism or "par-factor" of a DAG is the total cost to execute
all nodes, divided by the cost to execute the longest critical path through the
graph. This is the speedup you would get from running the graph in parallel, if
given in�nite CPU cores available and communication and synchronization are
zero.

Macro Task

When the partitioner coarsens the graph, it combines nodes together. Each �ne-
grained node represents an atomic "task"; combined nodes in the coarsened
graph are "macro-tasks". This term comes from Sarkar. Each macro-task
executes from start to end on one processor, without any synchronization to any
other macro-task during its execution. (Synchronization only happens before
the macro-task begins or after it ends.)

Edge Contraction

Our partitioner, like Sarkar's, primarily relies on "edge contraction" to coarsen
the graph. It starts with one macro-task per atomic task and iteratively com-
bines pairs of edge-connected macro-tasks.

Local Critical Path

Each node in the graph has a "local" critical path. That's the critical path
from the start of the graph to the start of the node, plus the node's cost, plus
the critical path from the end of the node to the end of the graph.

Sarkar calls out an important trade-o�: coarsening the graph reduces runtime syn-
chronization overhead among the macro-tasks, but it tends to increase the critical
path through the graph and thus reduces par-factor.

Sarkar's partitioner, and ours, chooses pairs of macro-tasks to merge such that the
growth in critical path is minimized. Each candidate merge would result in a new
node, which would have some local critical path. We choose the candidate that
would produce the shortest local critical path. Repeat until par-factor falls to a
target threshold. It's a greedy algorithm, and it's not guaranteed to produce the best
partition (which Sarkar proves is NP-hard).

Estimating Logic Costs

To compute the cost of any given path through the graph, Verilator estimates an
execution cost for each task. Each macro-task has an execution cost which is simply

5

Verilator 4.010 Internals Manual 3 CODE FLOWS

the sum of its tasks' costs. We assume that communication overhead and synchro-
nization overhead are zero, so the cost of any given path through the graph is simply
the sum of macro-task execution costs. Sarkar does almost the same thing, except
that he has nonzero estimates for synchronization costs.

Verilator's cost estimates are assigned by the InstrCountCostVisitor. This class is
perhaps the most fragile piece of the multithread implementation. It's easy to have
a bug where you count something cheap (eg. accessing one element of a huge array)
as if it were expensive (eg. by counting it as if it were an access to the entire array.)
Even without such gross bugs, the estimates this produce are only loosely predictive
of actual runtime cost. Multithread performance would be better with better runtime
costs estimates. This is an area to improve.

Scheduling Macro-Tasks at Runtime

After coarsening the graph, we must schedule the macro-tasks for runtime. Sarkar
describes two options: you can dynamically schedule tasks at runtime, with a runtime
graph follower. Sarkar calls this the "macro-data�ow model." Verilator does not
support this; early experiments with this approach had poor performance.

The other option is to statically assign macro-tasks to threads, with each thread
running its macro-tasks in a static order. Sarkar describes this in Chapter 5. Verilator
takes this static approach. The only dynamic aspect is that each macro task may
block before starting, to wait until its prerequisites on other threads have �nished.

The synchronization cost is cheap if the prereqs are done. If they're not, fragmentation
(idle CPU cores waiting) is possible. This is the major source of overhead in this
approach. The --prof-threads switch and the verilator_gantt script can visualize
the time lost to such fragmentation.

Locating Variables for Best Spatial Locality

After scheduling all code, we attempt to locate variables in memory such that vari-
ables accessed by a single macro-task are close together in memory. This provides
"spatial locality" -- when we pull in a 64-byte cache line to access a 2-byte variable,
we want the other 62 bytes to be ones we'll also likely access soon, for best cache
performance.

This turns out to be critical for performance. It should allow Verilator to scale to
very large models. We don't rely on our working set �tting in any CPU cache; instead
we essentially "stream" data into caches from memory. It's not literally streaming,
where the address increases monotonically, but it should have similar performance
characteristics, so long as each macro-task's dataset �ts in one core's local caches.

To achieve spatial locality, we tag each variable with the set of macro-tasks that access
it. Let's call this set the "footprint" of that variable. The variables in a given module
have a set of footprints. We can order those footprints to minimize the distance

6

Verilator 4.010 Internals Manual 3 CODE FLOWS

between them (distance is the number of macro-tasks that are di�erent across any
two footprints) and then emit all variables into the struct in ordered-footprint order.

The footprint ordering is literally the traveling salesman problem, and we use a TSP-
approximation algorithm to get close to an optimal sort.

This is an old idea. Simulators designed at DEC in the early 1990s used similar
techniques to optimize both single-thread and multi-thread modes. (Verilator does
not optimize variable placement for spatial locality in serial mode; that is a possible
area for improvement.)

Improving Multithreaded Performance Further (a TODO list)

Wave Scheduling

To allow the verilated model to run in parallel with the testbench, it might
be nice to support "wave" scheduling, in which work on a cycle begins before
eval() is called or continues after eval() returns. For now all work on a cycle
happens during the eval() call, leaving Verilator's threads idle while the test-
bench (everything outside eval()) is working. This would involve fundamental
changes within the partitioner, however, it's probably the best bet for hiding
testbench latency.

Efficient Dynamic Scheduling

To scale to more than a few threads, we may revisit a fully dynamic scheduler.
For large (>16 core) systems it might make sense to dedicate an entire core to
scheduling, so that scheduler data structures would �t in its L1 cache and thus
the cost of traversing priority-ordered ready lists would not be prohibitive.

Static Scheduling with Runtime Repack

We could modify the static scheduling approach by gathering actual macro-task
execution times at run time, and dynamically re-packing the macro-tasks into
the threads also at run time. Say, re-pack once every 10,000 cycles or something.
This has the potential to do better than our static estimates about macro-task
run times. It could potentially react to CPU cores that aren't performing
equally, due to NUMA or thermal throttling or nonuniform competing memory
tra�c or whatever.

Clock Domain Balancing

Right now Verilator makes no attempt to balance clock domains across macro-
tasks. For a multi-domain model, that could lead to bad gantt chart fragmen-
tation. This could be improved if it's a real problem in practice.

Other Forms of MTask Balancing

The largest source of runtime overhead is idle CPUs, which happens due to
variance between our predicted runtime for each MTask and its actual runtime.
That variance is magni�ed if MTasks are homogeneous, containing similar re-
peating logic which was generally close together in source code and which is
still packed together even after going through Verilator's digestive tract.

7

Verilator 4.010 Internals Manual 3 CODE FLOWS

If Verilator could avoid doing that, and instead would take source logic that was
close together and distribute it across MTasks, that would increase the diversity
of any given MTask, and this should reduce variance in the cost estimates.

One way to do that might be to make various "tie breaker" comparison routines
in the sources to rely more heavily on randomness, and generally try harder not
to keep input nodes together when we have the option to scramble things.

Performance Regression

It would be nice if we had a regression of large designs, with some diversity of
design styles, to test on both single- and multi-threaded modes. This would
help to avoid performance regressions, and also to evaluate the optimizations
while minimizing the impact of parasitic noise.

Per-Instance Classes

If we have multiple instances of the same module, and they partition di�erently
(likely; we make no attempt to partition them the same) then the variable sort
will be suboptimal for either instance. A possible improvement would be to emit
a unique class for each instance of a module, and sort its variables optimally
for that instance's code stream.

Verilated Flow

The evaluation loop outputted by Verilator is designed to allow a single function to
perform evaluation under most situations.

On the �rst evaluation, the Verilated code calls initial blocks, and then "settles" the
modules, by evaluating functions (from always statements) until all signals are stable.

On other evaluations, the Verilated code detects what input signals have changes. If
any are clocks, it calls the appropriate sequential functions (from always @ posedge
statements). Interspersed with sequential functions it calls combo functions (from
always @*). After this is complete, it detects any changes due to combo loops or
internally generated clocks, and if one is found must reevaluate the model again.

For SystemC code, the eval() function is wrapped in a SystemC SC_METHOD,
sensitive to all inputs. (Ideally it would only be sensitive to clocks and combo inputs,
but tracing requires all signals to cause evaluation, and the performance di�erence is
small.)

If tracing is enabled, a callback examines all variables in the design for changes, and
writes the trace for each change. To accelerate this process the evaluation process
records a bitmask of variables that might have changed; if clear, checking those signals
for changes may be skipped.

8

Verilator 4.010 Internals Manual 4 CODING CONVENTIONS

4 CODING CONVENTIONS

Indentation style

To match the indentation of Verilator C++ sources, use 4 spaces per level, and leave
tabs at 8 columns, so every other indent level is a tab stop.

All �les should contain the magic header to insure standard indentation:

// -*- mode: C++; c-file-style: "cc-mode" -*-

This sets indentation to the cc-mode defaults. (Verilator predates a CC-mode change
of several years ago which overrides the defaults with GNU style indentation; the
c-set-style undoes that.)

The astgen script

Some of the code implementing passes is extremely repetitive, and must be imple-
mented for each sub-class of AstNode. However, while repetitive, there is more vari-
ability than can be handled in C++ macros.

In Verilator this is implemented by using a Perl script, astgen to pre-process the
C++ code. For example in V3Const.cpp this is used to implement the visit()

functions for each binary operation using the TREEOP macro.

The original C++ source code is transformed into C++ code in the obj_opt and
obj_dbg sub-directories (the former for the optimized version of Verilator, the latter
for the debug version). So for example V3Const.cpp into V3Const__gen.cpp.

Visitor Functions

Verilator uses the Visitor design pattern to implement its re�nement and optimization
passes. This allows separation of the pass algorithm from the AST on which it oper-
ates. Wikipedia provides an introduction to the concept at http://en.wikipedia.org/wiki/Visitor_pattern.

As noted above, all visitors are derived classes of AstNVisitor. All derived classes
of AstNode implement the accept method, which takes as argument a reference
to an instance or a AstNVisitor derived class and applies the visit method of the
AstNVisitor to the invoking AstNode instance (i.e. this).

One possible di�culty is that a call to accept may perform an edit which destroys the
node it receives as argument. The acceptSubtreeReturnEdits method of AstNode
is provided to apply accept and return the resulting node, even if the original node
is destroyed (if it is not destroyed it will just return the original node).

9

Verilator 4.010 Internals Manual 4 CODING CONVENTIONS

The behavior of the visitor classes is achieved by overloading the visit function for
the di�erent AstNode derived classes. If a speci�c implementation is not found, the
system will look in turn for overloaded implementations up the inheritance hierarchy.
For example calling accept on AstIf will look in turn for:

void visit(AstIf* nodep)

void visit(AstNodeIf* nodep)

void visit(AstNodeStmt* nodep)

void visit(AstNode* nodep)

There are three ways data is passed between visitor functions.

1. A visitor-class member variable. This is generally for passing "parent" informa-
tion down to children. m_modp is a common example. It's set to NULL in the
constructor, where that node (AstModule visitor) sets it, then the children are
iterated, then it's cleared. Children under an AstModule will see it set, while
nodes elsewhere will see it clear. If there can be nested items (for example
an AstFor under an AstFor) the variable needs to be save-set-restored in the
AstFor visitor, otherwise exiting the lower for will lose the upper for's setting.

2. User attributes. Each AstNode (Note. The AST node, not the visitor) has �ve
user attributes, which may be accessed as an integer using the user1() through
user5() methods, or as a pointer (of type AstNUser) using the user1p()

through user5p() methods (a common technique lifted from graph traversal
packages).

A visitor �rst clears the one it wants to use by calling AstNode::user#ClearTree(),
then it can mark any node's user() with whatever data it wants. Readers just
call nodep->user(), but may need to cast appropriately, so you'll often see
VN_CAST(nodep->userp(), SOMETYPE). At the top of each visitor are com-
ments describing how the user() stu� applies to that visitor class. For exam-
ple:

// NODE STATE

// Cleared entire netlist

// AstModule::user1p() // bool. True to inline this module

This says that at the AstNetlist user1ClearTree() is called. Each AstModule's
user1() is used to indicate if we're going to inline it.

These comments are important to make sure a user#() on a given AstNode

type is never being used for two di�erent purposes.

Note that calling user#ClearTree is fast, it doesn't walk the tree, so it's ok to
call fairly often. For example, it's commonly called on every module.

3. Parameters can be passed between the visitors in close to the "normal" function
caller to callee way. This is the second vup parameter of type AstNUser that
is ignored on most of the visitor functions. V3Width does this, but it proved
more messy than the above and is deprecated. (V3Width was nearly the �rst
module written. Someday this scheme may be removed, as it slows the program
down to have to pass vup everywhere.)

10

Verilator 4.010 Internals Manual 4 CODING CONVENTIONS

Iterators

AstNVisitor provides a set of iterators to facilitate walking over the tree. Each
operates on the current AstNVisitor class (as this) and takes an argument type
AstNode*.

iterate

This just applies the accept method of the AstNode to the visitor function.

iterateAndNextIgnoreEdit

Applies the accept method of each AstNode in a list (i.e. connected by nextp

and backp pointers).

iterateAndNext

Applies the accept method of each AstNode in a list. If a node is edited by the
call to accept, apply accept again, until the node does not change.

iterateListBackwards

Applies the accept method of each AstNode in a list, starting with the last one.

iterateChildren

Apply the iterateAndNext method on each child op1p through op4p in turn.

iterateChildrenBackwards

Apply the iterateListBackwards method on each child op1p through op4p in
turn.

Caution on Using Iterators When Child Changes

Visitors often replace one node with another node; V3Width and V3Const are major
examples. A visitor which is the parent of such a replacement needs to be aware that
calling iteration may cause the children to change. For example:

// nodep->lhsp() is 0x1234000

iterateAndNextNull(nodep->lhsp()); // and under covers nodep->lhsp() changes

// nodep->lhsp() is 0x5678400

iterateAndNextNull(nodep->lhsp());

Will work �ne, as even if the �rst iterate causes a new node to take the place of the
lhsp(), that edit will update nodep->lhsp() and the second call will correctly see the
change. Alternatively:

lp = nodep->lhsp();

// nodep->lhsp() is 0x1234000, lp is 0x1234000

iterateAndNextNull(lp); **lhsp=NULL;** // and under covers nodep->lhsp() changes

// nodep->lhsp() is 0x5678400, lp is 0x1234000

iterateAndNextNull(lp);

11

Verilator 4.010 Internals Manual 5 TESTING

This will cause bugs or a core dump, as lp is a dangling pointer. Thus it is advisable
to set lhsp=NULL shown in the *'s above to make sure these dangles are avoided.
Another alternative used in special cases mostly in V3Width is to use acceptSub-
treeReturnEdits, which operates on a single node and returns the new pointer if any.
Note acceptSubtreeReturnEdits does not follow nextp() links.

lp = acceptSubtreeReturnEdits(lp)

Identifying derived classes

A common requirement is to identify the speci�c AstNode class we are dealing with.
For example a visitor might not implement separate visit methods for AstIf and
AstGenIf, but just a single method for the base class:

void visit (AstNodeIf* nodep)

However that method might want to specify additional code if it is called for AstGenIf.
Verilator does this by providing a VN_CAST method for each possible node type, using
C++ dynamic_cast. This either returns a pointer to the object cast to that type (if
it is of class SOMETYPE, or a derived class of SOMETYPE) or else NULL. So our visit
method could use:

if (VN_CAST(nodep, AstGenIf) {

<code specific to AstGenIf>

}

A common test is for AstNetlist, which is the node at the root of the AST.

5 TESTING

For an overview of how to write a test see the BUGS section of the Verilator primary
manual.

It is important to add tests for failures as well as success (for example to check that
an error message is correctly triggered).

Tests that fail should by convention have the su�x _bad in their name, and include
fails => 1 in either their compile or execute step as appropriate.

Preparing to Run Tests

For all tests to pass you must install the following packages:

12

Verilator 4.010 Internals Manual 5 TESTING

* SystemC to compile the SystemC outputs, see http://systemc.org

* Parallel::Forker from CPAN to run tests in parallel, you can install this with e.g.
"sudo cpan install Parallel::Forker".

* vcddi� to �nd di�erences in VCD outputs. See the readme at https://github.com/veripool/vcddi�

Controlling the Test Driver

Test drivers are written in PERL. All invoke the main test driver script, which can
provide detailed help on all the features available when writing a test driver.

test_regress/t/driver.pl --help

For convenience, a summary of the most commonly used features is provided here.
All drivers require a call to compile subroutine to compile the test. For run-time
tests, this is followed by a call to the execute subroutine. Both of these functions can
optionally be provided with a hash table as argument specifying additional options.

The test driver assumes by default that the source Verilog �le name matches the
PERL driver name. So a test whose driver is t/t_mytest.pl will expect a Verilog
source �le t/t_mytest.v. This can be changed using the top_filename subroutine,
for example

top_filename("t/t_myothertest.v");

By default all tests will run with major simulators (Icarus Verilog, NC, VCS, Mod-
elSim) as well as Verilator, to allow results to be compared. However if you wish a
test only to be used with Verilator, you can use the following:

$Self->{vlt} or $Self->skip("Verilator only test");

Of the many options that can be set through arguments to compiler and execute,
the following are particularly useful:

verilator_flags2

A list of �ags to be passed to verilator when compiling.

fails

Set to 1 to indicate that the compilation or execution is intended to fail.

For example the following would specify that compilation requires two de�nes and is
expected to fail.

13

Verilator 4.010 Internals Manual 5 TESTING

compile (

verilator_flags2 => ["-DSMALL_CLOCK -DGATED_COMMENT"],

fails => 1,

);

Regression Testing for Developers

Developers will also want to call ./con�gure with two extra �ags:

--enable-ccwarn

Causes the build to stop on warnings as well as errors. A good way to ensure
no sloppy code gets added, however it can be painful when it comes to testing,
since third party code used in the tests (e.g. SystemC) may not be warning
free.

--enable-longtests

In addition to the standard C, SystemC examples, also run the tests in the
test_regress directory when using make test. This is disabled by default
as SystemC installation problems would otherwise falsely indicate a Verilator
problem.

When enabling the long tests, some additional PERL modules are needed, which you
can install using cpan.

cpan install Unix::Processors

There are some traps to avoid when running regression tests

� When checking the MANIFEST, the test will barf on unexpected code in the
Verilator tree. So make sure to keep any such code outside the tree.

� Not all Linux systems install Perldoc by default. This is needed for the --help

option to Verilator, and also for regression testing. This can be installed using
cpan:

cpan install Pod::Perldoc

Many Linux systems also o�er a standard package for this. Red Hat/Fedora/Centos
o�er perl-Pod-Perldoc, while Debian/Ubuntu/Linux Mint o�er perl-doc.

� Running regression may exhaust resources on some Linux systems, particularly
�le handles and user processes. Increase these to respectively 16,384 and 4,096.
The method of doing this is system dependent, but on Fedora Linux it would
require editing the /etc/security/limits.conf �le as root.

14

Verilator 4.010 Internals Manual 6 DEBUGGING

6 DEBUGGING

--debug

When you run with --debug there are two primary output �le types placed into the
obj_dir, .tree and .dot �les.

.dot output

Dot �les are dumps of internal graphs in Graphviz http://www.graphviz.org/ dot for-
mat. When a dot �le is dumped, Verilator will also print a line on stdout that can
be used to format the output, for example:

dot -Tps -o ~/a.ps obj_dir/Vtop_foo.dot

You can then print a.ps. You may prefer gif format, which doesn't get scaled so can
be more useful with large graphs.

For dynamic graph viewing consider ZGRViewer http://zvtm.sourceforge.net/zgrviewer.html.
If you know of better viewers let us know; ZGRViewer isn't great for large graphs.

.tree output

Tree �les are dumps of the AST Tree and are produced between every major algo-
rithmic stage. An example:

NETLIST 0x90fb00 <e1> {a0}

1: MODULE 0x912b20 <e8822> {a8} top L2 [P]

*1:2: VAR 0x91a780 <e74#> {a22} @dt=0xa2e640(w32) out_wide [O] WIRE

1:2:1: BASICDTYPE 0xa2e640 <e2149> {e24} @dt=this(sw32) integer kwd=integer range=[31:0]

The following summarizes the above example dump, with more detail on each �eld
in the section below.

"1:2:" indicates the hierarchy of the VAR is the op2p pointer under the MODULE, which
in turn is the op1p pointer under the NETLIST

"VAR" is the AstNodeType.

"0x91a780" is the address of this node.

"<e74>" means the 74th edit to the netlist was the last modi�cation to this node.

15

Verilator 4.010 Internals Manual 6 DEBUGGING

"{a22}" indicates this node is related to line 22 in the source �lename "a", where "a"
is the �rst �le read, "z" the 26th, and "aa" the 27th.

"@dt=0x..." indicates the address of the data type this node contains.

"w32" indicates the width is 32 bits.

"out_wide" is the name of the node, in this case the name of the variable.

"[O]" are �ags which vary with the type of node, in this case it means the variable is
an output.

In more detail the following �elds are dumped common to all nodes. They are pro-
duced by the AstNode::dump() method:

Tree Hierarchy

The dump lines begin with numbers and colons to indicate the child node hi-
erarchy. As noted above in Key Classes Used in the Verilator Flow, AstNode
has lists of items at the same level in the AST, connected by the nextp() and
prevp() pointers. These appear as nodes at the same level. For example after
inlining:

NETLIST 0x929c1c8 <e1> {a0} w0

1: MODULE 0x92bac80 <e3144> {e14} w0 TOP_t L1 [P]

1:1: CELLINLINE 0x92bab18 <e3686#> {e14} w0 v -> t

1:1: CELLINLINE 0x92bc1d8 <e3688#> {e24} w0 v__DOT__i_test_gen -> test_gen

...

1: MODULE 0x92b9bb0 <e503> {e47} w0 test_gen L3

...

AstNode type

The textual name of this node AST type (always in capitals). Many of these
correspond directly to Verilog entities (for example MODULE and TASK), but oth-
ers are internal to Verialtor (for example NETLIST and BASICDTYPE).

Address of the node

A hexadecimal address of the node in memory. Useful for examining with the
debugger.

Last edit number

Of the form <ennnn> or <ennnn#> , where nnnn is the number of the last edit
to modify this node. The trailing # indicates the node has been edited since the
last tree dump (which typically means in the last re�nement or optimization
pass). GDB can watch for this, see Debugging with GDB.

Source �le and line

Of the form {xxnnnn}, where C{xx} is the �lename letter (or letters) and nnnn

is the line number within that �le. The �rst �le is a, the 26th is z, the 27th is
aa and so on.

16

Verilator 4.010 Internals Manual 6 DEBUGGING

User pointers

Shows the value of the node's user1p...user5p, if non-NULL.

Data type

Many nodes have an explicit data type. "@dt=0x..." indicates the address of
the data type (AstNodeDType) this node uses.

If a data type is present and is numeric, it then prints the width of the item.
This �eld is a sequence of �ag characters and width data as follows:

s if the node is signed.

d if the node is a double (i.e a �oating point entity).

w always present, indicating this is the width �eld.

u if the node is unsized.

/nnnn if the node is unsized, where nnnn is the minimum width.

Name of the entity represented by the node if it exists

For example for a VAR it is the name of the variable.

Many nodes follow these �elds with additional node speci�c information. Thus the
VARREF node will print either [LV] or [RV] to indicate a left value or right value,
followed by the node of the variable being referred to. For example:

1:2:1:1: VARREF 0x92c2598 <e509> {e24} w0 clk [RV] <- VAR 0x92a2e90 <e79> {e18} w0 clk [I] INPUT

In general, examine the dump() method in V3AstNodes.cpp of the node type in
question to determine additional �elds that may be printed.

The MODULE has a list of CELLINLINE nodes referred to by its op1p() pointer, con-
nected by nextp() and prevp() pointers.

Similarly the NETLIST has a list of modules referred to by its op1p() pointer.

Debugging with GDB

The test_regress/driver.pl script accepts --debug --gdb to start Verilator under gdb
and break when an error is hit or the program is about to exit. You can also use --
debug --gdbbt to just backtrace and then exit gdb. To debug the Verilated executable,
use --gdbsim.

If you wish to start Verilator under GDB (or another debugger), then you can use
--debug and look at the underlying invocation of verilator_dgb. For example

t/t_alw_dly.pl --debug

17

Verilator 4.010 Internals Manual 6 DEBUGGING

shows it invokes the command:

../verilator_bin_dbg --prefix Vt_alw_dly --x-assign unique --debug

-cc -Mdir obj_dir/t_alw_dly --debug-check -f input.vc t/t_alw_dly.v

Start GDB, then start with the remaining arguments.

gdb ../verilator_bin_dbg

...

(gdb) start --prefix Vt_alw_dly --x-assign unique --debug -cc -Mdir

obj_dir/t_alw_dly --debug-check -f input.vc t/t_alw_dly.v

> obj_dir/t_alw_dly/vlt_compile.log

...

Temporary breakpoint 1, main (argc=13, argv=0xbfffefa4, env=0xbfffefdc)

at ../Verilator.cpp:615

615 ios::sync_with_stdio();

(gdb)

You can then continue execution with breakpoints as required.

To break at a speci�c edit number which changed a node (presumably to �nd what
made a <e####> line in the tree dumps):

watch AstNode::s_editCntGbl==####

To print a node:

pn nodep

or: call nodep->dumpGdb() # aliased to "pn" in src/.gdbinit

pnt nodep

or: call nodep->dumpTreeGdb() # aliased to "pnt" in src/.gdbinit

When GDB halts, it is useful to understand that the backtrace will commonly show
the iterator functions between each invocation of visit in the backtrace. You will
typically see a frame sequence something like

...

visit()

iterateChildren()

iterateAndNext()

accept()

visit()

...

18

Verilator 4.010 Internals Manual 8 DISTRIBUTION

7 ADDING A NEW FEATURE

Generally what would you do to add a new feature?

1. File a bug (if there isn't already) so others know what you're working on.

2. Make a testcase in the test_regress/t/t_EXAMPLE format, see TESTING.

3. If grammar changes are needed, look at the git version of VerilogPerl's src/VParseGrammar.y,
as this grammar supports the full SystemVerilog language and has a lot of back-
and-forth with Verilator's grammar. Copy the appropriate rules to src/verilog.y
and modify the productions.

4. If a new Ast type is needed, add it to V3AstNodes.h.

Now you can run "test_regress/t/t_{new testcase}.pl --debug" and it'll probably
fail but you'll see a test_regress/obj_dir/t_{newtestcase}/*.tree �le which you can
examine to see if the parsing worked. See also the sections above on debugging.

Modify the later visitor functions to process the new feature as needed.

Adding a new pass

For more substantial changes you may need to add a new pass. The simplest way to
do this is to copy the .cpp and .h �les from an existing pass. You'll need to add a
call into your pass from the process() function in src/verilator.cpp.

To get your pass to build you'll need to add its binary �lename to the list in
src/Makefile_obj.in and recon�gure.

8 DISTRIBUTION

The latest version is available from http://www.veripool.org/.

Copyright 2008-2019 byWilson Snyder. Verilator is free software; you can redistribute
it and/or modify it under the terms of either the GNU Lesser General Public License
Version 3 or the Perl Artistic License Version 2.0.

19

	1 NAME
	2 INTRODUCTION
	3 CODE FLOWS
	4 CODING CONVENTIONS
	5 TESTING
	6 DEBUGGING
	7 ADDING A NEW FEATURE
	8 DISTRIBUTION

