
Verilator 4.108

https://verilator.org

2021-01-10

1

Verilator 4.108 CONTENTS

Contents

1 NAME 2

2 SYNOPSIS 2

3 DESCRIPTION 2

4 ARGUMENT SUMMARY 2

5 VERILATION ARGUMENTS 6

6 SIMULATION RUNTIME ARGUMENTS 24

7 EXAMPLE C++ EXECUTION 25

8 EXAMPLE SYSTEMC EXECUTION 26

9 EVALUATION LOOP 28

10 BENCHMARKING & OPTIMIZATION 29

11 FILES 30

12 ENVIRONMENT 31

13 CONNECTING TO C++ 33

14 CONNECTING TO SYSTEMC 34

15 DIRECT PROGRAMMING INTERFACE (DPI) 34

16 VERIFICATION PROCEDURAL INTERFACE (VPI) 37

17 CROSS COMPILATION 38

18 HIERARCHICAL VERILATION 41

1

Verilator 4.108 CONTENTS

19 MULTITHREADING 43

20 CONFIGURATION FILES 44

21 LANGUAGE STANDARD SUPPORT 47

22 LANGUAGE EXTENSIONS 48

23 LANGUAGE LIMITATIONS 54

24 ERRORS AND WARNINGS 60

25 DEPRECATIONS 73

26 FAQ/FREQUENTLY ASKED QUESTIONS 73

27 BUGS 79

28 HISTORY 79

29 AUTHORS 80

30 CONTRIBUTORS 80

31 DISTRIBUTION 81

32 SEE ALSO 82

2

Verilator 4.108 4 ARGUMENT SUMMARY

1 NAME

Verilator - Translate and simulate SystemVerilog code using C++/SystemC

2 SYNOPSIS

verilator --help

verilator --version

verilator --cc [options] [source_files.v]... [opt_c_files.cpp/c/cc/a/o/so]

verilator --sc [options] [source_files.v]... [opt_c_files.cpp/c/cc/a/o/so]

verilator --lint-only -Wall [source_files.v]...

3 DESCRIPTION

The "Verilator" package converts all synthesizable, and many behavioral, Verilog and SystemVerilog designs
into a C++ or SystemC model that after compiling can be executed. Verilator is not a traditional simulator,
but a compiler.

Verilator is typically used as follows:

1. The verilator executable is invoked with parameters similar to GCC, Cadence Verilog-XL/NC-Verilog,
or Synopsys VCS. verilator reads the speci�ed user's SystemVerilog code, lints it, optionally adds coverage
and waveform tracing support, and compiles the design into a source level C++ or SystemC "model". The
resulting model's C++ or SystemC code is output as .cpp and .h �les. This is referred to as "verilating"
and the process is "to verilate"; the output is a "verilated" model.

2. For simulation, a small user written C++ wrapper �le is required, the "wrapper". This wrapper de�nes
the C++ function `main()` which instantiates the Verilated model as a C++/SystemC object.

3. The user main wrapper, the �les created by Verilator, a "runtime library" provided by Verilator, and if
applicable the SystemC libraries are then compiled using a C++ compiler to create a simulation executable.

4. The resulting executable will perform the actual simulation, during "simulation runtime".

To get started, jump down to the �7 section.

4 ARGUMENT SUMMARY

This is a short summary of the arguments to the "verilator" executable. See �5 for the detailed descriptions
of these arguments.

{file.v} Verilog package, module and top module filenames

{file.c/cc/cpp} Optional C++ files to compile in

{file.a/o/so} Optional C++ files to link in

3

Verilator 4.108 4 ARGUMENT SUMMARY

+1364-1995ext+<ext> Use Verilog 1995 with file extension <ext>

+1364-2001ext+<ext> Use Verilog 2001 with file extension <ext>

+1364-2005ext+<ext> Use Verilog 2005 with file extension <ext>

+1800-2005ext+<ext> Use SystemVerilog 2005 with file extension <ext>

+1800-2009ext+<ext> Use SystemVerilog 2009 with file extension <ext>

+1800-2012ext+<ext> Use SystemVerilog 2012 with file extension <ext>

+1800-2017ext+<ext> Use SystemVerilog 2017 with file extension <ext>

--assert Enable all assertions

--autoflush Flush streams after all $displays

--bbox-sys Blackbox unknown $system calls

--bbox-unsup Blackbox unsupported language features

--bin <filename> Override Verilator binary

--build Build model executable/library after Verilation

-CFLAGS <flags> C++ compiler flags for makefile

--cc Create C++ output

--cdc Clock domain crossing analysis

--clk <signal-name> Mark specified signal as clock

--make <build-tool> Generate scripts for specified build tool

--compiler <compiler-name> Tune for specified C++ compiler

--converge-limit <loops> Tune convergence settle time

--coverage Enable all coverage

--coverage-line Enable line coverage

--coverage-toggle Enable toggle coverage

--coverage-user Enable SVL user coverage

--coverage-underscore Enable coverage of _signals

-D<var>[=<value>] Set preprocessor define

--debug Enable debugging

--debug-check Enable debugging assertions

--no-debug-leak Disable leaking memory in --debug mode

--debugi <level> Enable debugging at a specified level

--debugi-<srcfile> <level> Enable debugging a source file at a level

--default-language <lang> Default language to parse

+define+<var>=<value> Set preprocessor define

--dpi-hdr-only Only produce the DPI header file

--dump-defines Show preprocessor defines with -E

--dump-tree Enable dumping .tree files

--dump-treei <level> Enable dumping .tree files at a level

--dump-treei-<srcfile> <level> Enable dumping .tree file at a source file at a level

--dump-tree-addrids Use short identifiers instead of addresses

-E Preprocess, but do not compile

--error-limit <value> Abort after this number of errors

--exe Link to create executable

-F <file> Parse options from a file, relatively

-f <file> Parse options from a file

-FI <file> Force include of a file

--flatten Force inlining of all modules, tasks and functions

-G<name>=<value> Overwrite top-level parameter

--gdb Run Verilator under GDB interactively

--gdbbt Run Verilator under GDB for backtrace

--generate-key Create random key for --protect-key

--getenv <var> Get environment variable with defaults

--help Display this help

--hierarchical Enable hierarchical Verilation

-I<dir> Directory to search for includes

4

Verilator 4.108 4 ARGUMENT SUMMARY

-j <jobs> Parallelism for --build

--gate-stmts <value> Tune gate optimizer depth

--if-depth <value> Tune IFDEPTH warning

+incdir+<dir> Directory to search for includes

--inhibit-sim Create function to turn off sim

--inline-mult <value> Tune module inlining

-LDFLAGS <flags> Linker pre-object flags for makefile

--l2-name <value> Verilog scope name of the top module

--language <lang> Default language standard to parse

+libext+<ext>+[ext]... Extensions for finding modules

--lint-only Lint, but do not make output

-MAKEFLAGS <flags> Options to make during --build

--max-num-width <value> Maximum number width (default: 64K)

--MMD Create .d dependency files

--MP Create phony dependency targets

--Mdir <directory> Name of output object directory

--mod-prefix <topname> Name to prepend to lower classes

--no-clk <signal-name> Prevent marking specified signal as clock

--no-decoration Disable comments and symbol decorations

--no-pins64 Don't use vluint64_t's for 33-64 bit sigs

--no-skip-identical Disable skipping identical output

+notimingchecks Ignored

-O0 Disable optimizations

-O3 High performance optimizations

-O<optimization-letter> Selectable optimizations

-o <executable> Name of final executable

--no-order-clock-delay Disable ordering clock enable assignments

--no-verilate Skip verilation and just compile previously Verilated code.

--output-split <statements> Split .cpp files into pieces

--output-split-cfuncs <statements> Split model functions

--output-split-ctrace <statements> Split tracing functions

-P Disable line numbers and blanks with -E

--pins-bv <bits> Specify types for top level ports

--pins-sc-uint Specify types for top level ports

--pins-sc-biguint Specify types for top level ports

--pins-uint8 Specify types for top level ports

--pipe-filter <command> Filter all input through a script

--pp-comments Show preprocessor comments with -E

--prefix <topname> Name of top level class

--prof-cfuncs Name functions for profiling

--prof-threads Enable generating gantt chart data for threads

--protect-key <key> Key for symbol protection

--protect-ids Hash identifier names for obscurity

--protect-lib <name> Create a DPI protected library

--private Debugging; see docs

--public Debugging; see docs

--public-flat-rw Mark all variables, etc as public_flat_rw

-pvalue+<name>=<value> Overwrite toplevel parameter

--quiet-exit Don't print the command on failure

--relative-includes Resolve includes relative to current file

--no-relative-cfuncs Disallow 'this->' in generated functions

--report-unoptflat Extra diagnostics for UNOPTFLAT

--rr Run Verilator and record with rr

--savable Enable model save-restore

5

Verilator 4.108 4 ARGUMENT SUMMARY

--sc Create SystemC output

--stats Create statistics file

--stats-vars Provide statistics on variables

-sv Enable SystemVerilog parsing

+systemverilogext+<ext> Synonym for +1800-2017ext+<ext>

--threads <threads> Enable multithreading

--threads-dpi <mode> Enable multithreaded DPI

--threads-max-mtasks <mtasks> Tune maximum mtask partitioning

--timescale <timescale> Sets default timescale

--timescale-override <timescale> Overrides all timescales

--top <topname> Alias of --top-module

--top-module <topname> Name of top level input module

--trace Enable waveform creation

--trace-coverage Enable tracing of coverage

--trace-depth <levels> Depth of tracing

--trace-fst Enable FST waveform creation

--trace-max-array <depth> Maximum bit width for tracing

--trace-max-width <width> Maximum array depth for tracing

--trace-params Enable tracing of parameters

--trace-structs Enable tracing structure names

--trace-threads <threads> Enable waveform creation on separate threads

--trace-underscore Enable tracing of _signals

-U<var> Undefine preprocessor define

--unroll-count <loops> Tune maximum loop iterations

--unroll-stmts <stmts> Tune maximum loop body size

--unused-regexp <regexp> Tune UNUSED lint signals

-V Verbose version and config

-v <filename> Verilog library

+verilog1995ext+<ext> Synonym for +1364-1995ext+<ext>

+verilog2001ext+<ext> Synonym for +1364-2001ext+<ext>

--version Displays program version and exits

--vpi Enable VPI compiles

--waiver-output <filename> Create a waiver file based on the linter warnings

-Wall Enable all style warnings

-Werror-<message> Convert warnings to errors

-Wfuture-<message> Disable unknown message warnings

-Wno-<message> Disable warning

-Wno-context Disable source context on warnings

-Wno-fatal Disable fatal exit on warnings

-Wno-lint Disable all lint warnings

-Wno-style Disable all style warnings

-Wpedantic Warn on compliance-test issues

--x-assign <mode> Assign non-initial Xs to this value

--x-initial <mode> Assign initial Xs to this value

--x-initial-edge Enable initial X->0 and X->1 edge triggers

--xml-only Create XML parser output

--xml-output XML output filename

-y <dir> Directory to search for modules

This is a short summary of the simulation runtime arguments, i.e. for the �nal Verilated simulation runtime
models. See �6 for the detailed description of these arguments.

+verilator+debug Enable debugging

6

Verilator 4.108 5 VERILATION ARGUMENTS

+verilator+debugi+<value> Enable debugging at a level

+verilator+help Display help

+verilator+prof+threads+file+I<filename> Set profile filename

+verilator+prof+threads+start+I<value> Set profile starting point

+verilator+prof+threads+window+I<value> Set profile duration

+verilator+rand+reset+I<value> Set random reset technique

+verilator+seed+I<value> Set random seed

+verilator+noassert Disable assert checking

+verilator+V Verbose version and config

+verilator+version Show version and exit

5 VERILATION ARGUMENTS

The following are the arguments that may be passed to the "verilator" executable.

{�le.v}

Speci�es the Verilog �le containing the top module to be Verilated.

{�le.c/.cc/.cpp/.cxx}

Used with --exe to specify optional C++ �les to be linked in with the Verilog code. The �le path
should either be absolute, or relative to where the make will be executed from, or add to your make�le's
VPATH the appropriate directory to �nd the �le.

See also the -CFLAGS and -LDFLAGS options, which are useful when the C++ �les need special
compiler �ags.

{�le.a/.o/.so}

Speci�es optional object or library �les to be linked in with the Verilog code, as a shorthand for -
LDFLAGS "<�le>". The �le path should either be absolute, or relative to where the make will be
executed from, or add to your make�le's VPATH the appropriate directory to �nd the �le.

If any �les are speci�ed in this way, Verilator will include a make rule that uses these �les when linking
the module executable. This generally is only useful when used with the --exe option.

+1364-1995ext+ext

+1364-2001ext+ext

+1364-2005ext+ext

+1800-2005ext+ext

+1800-2009ext+ext

+1800-2012ext+ext

+1800-2017ext+ext

Speci�es the language standard to be used with a speci�c �lename extension, ext.

For compatibility with other simulators, see also the synonyms +verilog1995ext+ext, +verilog2001ext+ext,
and +systemverilogext+ext.

For any source �le, the language speci�ed by these options takes precedence over any language speci�ed
by the --default-language or --language options.

These options take e�ect in the order they are encountered. Thus the following would use Verilog 1995
for a.v and Verilog 2001 for b.v.

7

Verilator 4.108 5 VERILATION ARGUMENTS

verilator ... +1364-1995ext+v a.v +1364-2001ext+v b.v

These �ags are only recommended for legacy mixed language designs, as the preferable option is to
edit the code to repair new keywords, or add appropriate `begin_keywords.

Note `begin_keywords is a SystemVerilog construct, which speci�es only the set of keywords to be
recognized. This also controls some error messages that vary between language standards. Note at
present Verilator tends to be overly permissive, e.g. it will accept many grammar and other semantic
extensions which might not be legal when set to an older standard.

--assert

Enable all assertions.

--auto�ush

After every $display or $fdisplay, �ush the output stream. This ensures that messages will appear
immediately but may reduce performance. For best performance call "�ush(stdout)" occasionally in
the C++ main loop. Defaults to o�, which will bu�er output as provided by the normal C/C++
standard library IO.

--bbox-sys

Black box any unknown $system task or function calls. System tasks will simply become no-operations,
and system functions will be replaced with unsized zero. Arguments to such functions will be parsed,
but not otherwise checked. This prevents errors when linting in the presence of company speci�c PLI
calls.

Using this argument will likely cause incorrect simulation.

--bbox-unsup

Black box some unsupported language features, currently UDP tables, the cmos and tran gate primi-
tives, deassign statements, and mixed edge errors. This may enable linting the rest of the design even
when unsupported constructs are present.

Using this argument will likely cause incorrect simulation.

--bin �lename

Rarely needed. Override the default �lename for Verilator itself. When a dependency (.d) �le is
created, this �lename will become a source dependency, such that a change in this binary will have
make rebuild the output �les.

--build

After generating the SystemC/C++ code, Verilator will invoke the toolchain to build the model library
(and executable when --exe is also used). Verilator manages the build itself, and for this --build
requires GNU Make to be available on the platform.

-CFLAGS �ags

Add speci�ed C compiler �ag to the generated make�les. For multiple �ags either pass them as a single
argument with space separators quoted in the shell (-CFLAGS "-a -b"), or use multiple -CFLAGS
arguments (-CFLAGS -a -CFLAGS -b).

When make is run on the generated make�le these will be passed to the C++ compiler (g++/clang++/msvc++).

--cc

Speci�es C++ without SystemC output mode; see also --sc.

8

Verilator 4.108 5 VERILATION ARGUMENTS

--cdc

Permanently experimental. Perform some clock domain crossing checks and issue related warnings
(CDCRSTLOGIC) and then exit; if warnings other than CDC warnings are needed make a second run
with --lint-only. Additional warning information is also written to the �le {pre�x}__cdc.txt.

Currently only checks some items that other CDC tools missed; if you have interest in adding more
traditional CDC checks, please contact the authors.

--clk signal-name

Sometimes it is quite di�cult for Verilator to distinguish clock signals from other data signals. Occa-
sionally the clock signals can end up in the checking list of signals which determines if further evaluation
is needed. This will heavily degrade the performance of a Verilated model.

With --clk <signal-name>, user can speci�ed root clock into the model, then Verilator will mark the
signal as clocker and propagate the clocker attribute automatically to other signals derived from that.
In this way, Verilator will try to avoid taking the clocker signal into checking list.

Note signal-name is speci�ed by the RTL hierarchy path. For example, v.foo.bar. If the signal is the
input to top-module, the directly the signal name. If you �nd it di�cult to �nd the exact name, try
to use /*verilator clocker*/ in RTL �le to mark the signal directly.

If clock signals are assigned to vectors and then later used individually, Verilator will attempt to
decompose the vector and connect the single-bit clock signals directly. This should be transparent to
the user.

--make build-tool

Generates a script for the speci�ed build tool.

Supported values are gmake for GNU Make and cmake for CMake. Both can be speci�ed together. If no
build tool is speci�ed, gmake is assumed. The executable of gmake can be con�gured via environment
variable "MAKE".

When using --build Verilator takes over the responsibility of building the model library/executable.
For this reason --make cannot be speci�ed when using --build.

--compiler compiler-name

Enables workarounds for the speci�ed C++ compiler, either clang, gcc, or msvc. Currently this does
not change any performance tuning �ags, but it may in the future.

clang

Tune for clang. This may reduce execution speed as it enables several workarounds to avoid silly
hard-coded limits in clang. This includes breaking deep structures as for msvc as described below.

gcc

Tune for GNU C++, although generated code should work on almost any compliant C++ com-
piler. Currently the default.

msvc

Tune for Microsoft Visual C++. This may reduce execution speed as it enables several workarounds
to avoid silly hard-coded limits in MSVC++. This includes breaking deeply nested parenthesized
expressions into sub-expressions to avoid error C1009, and breaking deep blocks into functions to
avoid error C1061.

--converge-limit loops

Rarely needed. Speci�es the maximum number of runtime iterations before creating a model failed to
converge error. Defaults to 100.

--coverage

Enables all forms of coverage, alias for "--coverage-line --coverage-toggle --coverage-user".

9

Verilator 4.108 5 VERILATION ARGUMENTS

--coverage-line

Speci�es basic block line coverage analysis code should be inserted.

Coverage analysis adds statements at each code �ow change point (e.g. at branches). At each such
branch a unique counter is incremented. At the end of a test, the counters along with the �lename and
line number corresponding to each counter are written into logs/coverage.dat.

Verilator automatically disables coverage of branches that have a $stop in them, as it is assumed
$stop branches contain an error check that should not occur. A /*verilator coverage_block_o�*/
comment will perform a similar function on any code in that block or below, or /*verilator cover-
age_on/coverage_o�*/ will disable coverage around lines of code.

Note Verilator may over-count combinatorial (non-clocked) blocks when those blocks receive signals
which have had the UNOPTFLAT warning disabled; for most accurate results do not disable this
warning when using coverage.

--coverage-toggle

Speci�es signal toggle coverage analysis code should be inserted.

Every bit of every signal in a module has a counter inserted. The counter will increment on every edge
change of the corresponding bit.

Signals that are part of tasks or begin/end blocks are considered local variables and are not covered.
Signals that begin with underscores, are integers, or are very wide (>256 bits total storage across all
dimensions) are also not covered.

Hierarchy is compressed, such that if a module is instantiated multiple times, coverage will be summed
for that bit across ALL instantiations of that module with the same parameter set. A module instanti-
ated with di�erent parameter values is considered a di�erent module, and will get counted separately.

Verilator makes a minimally-intelligent decision about what clock domain the signal goes to, and only
looks for edges in that clock domain. This means that edges may be ignored if it is known that the
edge could never be seen by the receiving logic. This algorithm may improve in the future. The net
result is coverage may be lower than what would be seen by looking at traces, but the coverage is a
more accurate representation of the quality of stimulus into the design.

There may be edges counted near time zero while the model stabilizes. It's a good practice to zero all
coverage just before releasing reset to prevent counting such behavior.

A /*verilator coverage_o�/on */ comment pair can be used around signals that do not need toggle
analysis, such as RAMs and register �les.

--coverage-underscore

Enable coverage of signals that start with an underscore. Normally, these signals are not covered. See
also --trace-underscore.

--coverage-user

Enables user inserted functional coverage. Currently, all functional coverage points are speci�ed using
SVA which must be separately enabled with --assert.

For example, the following statement will add a coverage point, with the comment "DefaultClock":

DefaultClock: cover property (@(posedge clk) cyc==3);

-Dvar=value

De�nes the given preprocessor symbol. Similar to +de�ne, but does not allow multiple de�nitions with
a single option using plus signs. +de�ne is fairly standard across Verilog tools while -D is similar to
GCC.

10

Verilator 4.108 5 VERILATION ARGUMENTS

--debug

Select the debug executable of Verilator (if available), and enable more internal assertions (equivalent
to --debug-check), debugging messages (equivalent to --debugi 4), and intermediate form dump
�les (equivalent to --dump-treei 3).

--debug-check

Rarely needed. Enable internal debugging assertion checks, without changing debug verbosity. Enabled
automatically when --debug speci�ed.

--no-debug-leak

In --debug mode, by default Verilator intentionally leaks AstNode instances instead of freeing them,
so that each node pointer is unique in the resulting tree �les and dot �les.

This option disables the leak. This may avoid out-of-memory errors when Verilating large models in
--debug mode.

Outside of --debug mode, AstNode instances should never be leaked and this option has no e�ect.

--debugi level

--debugi-src�le level

Rarely needed - for developer use. Set internal debugging level globally to the speci�ed debug level
(1-10) or set the speci�ed Verilator source �le to the speci�ed level (e.g. --debugi-V3Width 9). Higher
levels produce more detailed messages.

--default-language value

Select the language to be used by default when �rst processing each Verilog �le. The language value
must be "1364-1995", "1364-2001", "1364-2005", "1800-2005", "1800-2009", "1800-2012" or "1800-
2017".

Any language associated with a particular �le extension (see the various +langext+ options) will be
used in preference to the language speci�ed by --default-language.

The --default-language �ag is only recommended for legacy code using the same language in all
source �les, as the preferable option is to edit the code to repair new keywords, or add appropri-
ate `begin_keywords. For legacy mixed language designs, the various +langext+ options should be
used.

If no language is speci�ed, either by this �ag or +langext+ options, then the latest SystemVerilog
language (IEEE 1800-2017) is used.

+de�ne+var=value

+de�ne+var=value+var2=value2...

De�nes the given preprocessor symbol, or multiple symbols if separated by plus signs. Similar to -D;
+de�ne is fairly standard across Verilog tools while -D is similar to GCC.

--dpi-hdr-only

Only generate the DPI header �le. This option has no e�ect on the name or location of the emitted
DPI header �le, it is output in --Mdir as it would be without this option.

--dump-de�nes

With -E, suppress normal output, and instead print a list of all de�nes existing at the end of pre-
processing the input �les. Similar to GCC "-dM" option. This also gives you a way of �nding out
what is prede�ned in Verilator using the command:

touch foo.v ; verilator -E --dump-defines foo.v

11

Verilator 4.108 5 VERILATION ARGUMENTS

--dump-tree

Rarely needed. Enable writing .tree debug �les with dumping level 3, which dumps the standard
critical stages. For details on the format see the Verilator Internals manual. --dump-tree is enabled
automatically with --debug, so "--debug --no-dump-tree" may be useful if the dump �les are large and
not desired.

--dump-treei level

--dump-treei-src�le level

Rarely needed - for developer use. Set internal tree dumping level globally to a speci�c dumping level or
set the speci�ed Verilator source �le to the speci�ed tree dumping level (e.g. --dump-treei-V3Order
9). Level 0 disables dumps and is equivalent to "--no-dump-tree". Level 9 enables dumping of every
stage.

--dump-tree-addrids

Rarely needed - for developer use. Replace AST node addresses with short identi�ers in tree dumps
to enhance readability. Each unique pointer value is mapped to a unique identi�er, but note that this
is not necessarily unique per node instance as an address might get reused by a newly allocated node
after a node with the same address has been dumped then freed.

-E

Preprocess the source code, but do not compile, as with 'gcc -E'. Output is written to standard out.
Beware of enabling debugging messages, as they will also go to standard out.

--error-limit value

After this number of errors are encountered during Verilator run, exit. Warnings are not counted in
this limit. Defaults to 50.

Does not a�ect simulation runtime errors, for those see +verilator+error+limit.

--exe

Generate an executable. You will also need to pass additional .cpp �les on the command line that
implement the main loop for your simulation.

-F �le

Read the speci�ed �le, and act as if all text inside it was speci�ed as command line parameters. Any
relative paths are relative to the directory containing the speci�ed �le. See also -f. Note -F is fairly
standard across Verilog tools.

-f �le

Read the speci�ed �le, and act as if all text inside it was speci�ed as command line parameters. Any
relative paths are relative to the current directory. See also -F. Note -f is fairly standard across Verilog
tools.

The �le may contain // comments which are ignored to the end of the line. Any $VAR, $(VAR), or
${VAR} will be replaced with the speci�ed environment variable.

-FI �le

Force include of the speci�ed C++ header �le. All generated C++ �les will insert a #include of the
speci�ed �le before any other includes. The speci�ed �le might be used to contain de�ne prototypes of
custom VL_VPRINTF functions, and may need to include verilatedos.h as this �le is included before
any other standard includes.

--�atten

Force �attening of the design's hierarchy, with all modules, tasks and functions inlined. Typically
used with --xml-only. Note �attening large designs may require signi�cant CPU time, memory and
storage.

12

Verilator 4.108 5 VERILATION ARGUMENTS

-Gname=value

Overwrites the given parameter of the toplevel module. The value is limited to basic data literals:

Verilog integer literals

The standard Verilog integer literals are supported, so values like 32'h8, 2'b00, 4 etc. are allowed.
Care must be taken that the single quote (I') is properly escaped in an interactive shell, e.g., as
-GWIDTH=8\'hx.

C integer literals

It is also possible to use C integer notation, including hexadecimal (0x..), octal (0..) or binary
(0b..) notation.

Double literals

Double literals must be one of the following styles: - contains a dot (.) (e.g. 1.23) - contains an ex-
ponent (e/E) (e.g. 12e3) - contains p/P for hexadecimal �oating point in C99 (e.g. 0x123.ABCp1)

Strings

Strings must be in double quotes (""). They must be escaped properly on the command line, e.g.
as -GSTR="\"My String\"" or -GSTR='"My String"'.

--gate-stmts value

Rarely needed. Set the maximum number of statements that may be present in an equation for the
gate substitution optimization to inline that equation.

--gdb

Run Verilator underneath an interactive GDB (or VERILATOR_GDB environment variable value)
session. See also --gdbbt.

--gdbbt

If --debug is speci�ed, run Verilator underneath a GDB process and print a backtrace on exit, then exit
GDB immediately. Without --debug or if GDB doesn't seem to work, this �ag is ignored. Intended for
easy creation of backtraces by users; otherwise see the --gdb �ag.

--generate-key

Generate a true-random key suitable for use with --protect-key, print it, and exit immediately.

--getenv variable

If the variable is declared in the environment, print it and exit immediately. Otherwise, if it's built into
Verilator (e.g. VERILATOR_ROOT), print that and exit immediately. Otherwise, print a newline
and exit immediately. This can be useful in make�les. See also -V, and the various *.mk �les.

--help

Displays this message and program version and exits.

--hierarchical

Enable hierarchical Verilation otherwise /*verilator hier_block*/ metacomment is ignored. See �18.

-Idir

See -y.

--if-depth value

Rarely needed. Set the depth at which the IFDEPTH warning will �re, defaults to 0 which disables
this warning.

+incdir+dir

See -y.

13

Verilator 4.108 5 VERILATION ARGUMENTS

--inhibit-sim

Rarely needed. Create a "inhibitSim(bool)" function to enable and disable evaluation. This allows an
upper level testbench to disable modules that are not important in a given simulation, without needing
to recompile or change the SystemC modules instantiated.

--inline-mult value

Tune the inlining of modules. The default value of 2000 speci�es that up to 2000 new operations may
be added to the model by inlining, if more than this number of operations would result, the module is
not inlined. Larger values, or a value < 1 will inline everything, will lead to longer compile times, but
potentially faster simulation speed. This setting is ignored for very small modules; they will always be
inlined, if allowed.

-j <value>

Specify the level of parallelism for --build. <value> must be a positive integer specifying the maximum
number of parallel build jobs, or can be omitted. When <value> is omitted, the build will not try to
limit the number of parallel build jobs but attempt to execute all independent build steps in parallel.

-LDFLAGS �ags

Add speci�ed C linker �ags to the generated make�les. For multiple �ags either pass them as a single
argument with space separators quoted in the shell (-LDFLAGS "-a -b"), or use multiple -LDFLAGS
arguments (-LDFLAGS -a -LDFLAGS -b).

When make is run on the generated make�le these will be passed to the C++ linker (ld) *after* the
primary �le being linked. This �ag is called -LDFLAGS as that's the traditional name in simulators; it's
would have been better called LDLIBS as that's the Make�le variable it controls. (In Make, LDFLAGS
is before the �rst object, LDLIBS after. -L libraries need to be in the Make variable LDLIBS, not
LDFLAGS.)

--l2-name value

Instead of using the module name when showing Verilog scope, use the name provided. This allows
simplifying some Verilator-embedded modeling methodologies. Default is an l2-name matching the top
module. The default before 3.884 was "--l2-name v"

For example, the program "module t; initial $display("%m"); endmodule" will show by default "t".
With "--l2-name v" it will print "v".

--language value

A synonym for --default-language, for compatibility with other tools and earlier versions of Verilator.

+libext+ext+ext...

Specify the extensions that should be used for �nding modules. If for example module x is referenced,
look in x.ext. Note +libext+ is fairly standard across Verilog tools. Defaults to .v and .sv.

--lint-only

Check the �les for lint violations only, do not create any other output.

You may also want the -Wall option to enable messages that are considered stylistic and not enabled
by default.

If the design is not to be completely Verilated see also the --bbox-sys and --bbox-unsup options.

-MAKEFLAGS <string>

When using --build, add the speci�ed �ag to the invoked make command line. For multiple �ags either
pass them as a single argument with space separators quoted in the shell (e.g. -MAKEFLAGS "-a -b"),
or use multiple -MAKEFLAGS arguments (e.g. -MAKEFLAGS -l -MAKEFLAGS -k). Use of this option
should not be required for simple builds using the host toolchain.

14

Verilator 4.108 5 VERILATION ARGUMENTS

--max-num-width value

Set the maximum number literal width (e.g. in 1024'd22 this it the 1024). Defaults to 64K.

--MMD =item --no-MMD

Enable/disable creation of .d dependency �les, used for make dependency detection, similar to gcc
-MMD option. By default this option is enabled for --cc or --sc modes.

--MP

When creating .d dependency �les with --MMD, make phony targets. Similar to gcc -MP option.

--Mdir directory

Speci�es the name of the Make object directory. All generated �les will be placed in this directory. If
not speci�ed, "obj_dir" is used. The directory is created if it does not exist and the parent directories
exist; otherwise manually create the Mdir before calling Verilator.

--mod-pre�x topname

Speci�es the name to prepend to all lower level classes. Defaults to the same as --pre�x.

--no-clk signal-name

Prevent the speci�ed signal from being marked as clock. See --clk.

--no-decoration

When creating output Verilated code, minimize comments, white space, symbol names and other
decorative items, at the cost of greatly reduced readability. This may assist C++ compile times. This
will not typically change the ultimate model's performance, but may in some cases.

--no-pins64

Backward compatible alias for "--pins-bv 33".

--no-relative-cfuncs

Disable 'this->' references in generated functions, and instead Verilator will generate absolute references
starting from 'vlTOPp->'. This prevents V3Combine from merging functions from multiple instances
of the same module, so it can grow the instruction stream.

This is a work around for old compilers. Don't set this if your C++ compiler supports __restrict__
properly, as GCC 4.5.x and newer do. For older compilers, test if this switch gives you better perfor-
mance or not.

Compilers which don't honor __restrict__ will suspect that 'this->' references and 'vlTOPp->' ref-
erences may alias, and may write slow code with extra loads and stores to handle the (imaginary)
aliasing. Using only 'vlTOPp->' references allows these old compilers to produce tight code.

--no-skip-identical =item --skip-identical

Rarely needed. Disables or enables skipping execution of Verilator if all source �les are identical, and
all output �les exist with newer dates. By default this option is enabled for --cc or --sc modes only.

+notimingchecks

Ignored for compatibility with other simulators.

-O0

Disables optimization of the model.

-O3

Enables slow optimizations for the code Verilator itself generates (as opposed to "-CFLAGS -O3" which
e�ects the C compiler's optimization. -O3 may improve simulation performance at the cost of compile
time. This currently sets --inline-mult -1.

15

Verilator 4.108 5 VERILATION ARGUMENTS

-Ooptimization-letter

Rarely needed. Enables or disables a speci�c optimizations, with the optimization selected based on
the letter passed. A lowercase letter disables an optimization, an upper case letter enables it. This is
intended for debugging use only; see the source code for version-dependent mappings of optimizations
to -O letters.

-o executable

Specify the name for the �nal executable built if using --exe. Defaults to the --pre�x if not speci�ed.

--no-order-clock-delay

Rarely needed. Disables a bug �x for ordering of clock enables with delayed assignments. This �ag
should only be used when suggested by the developers.

--output-split statements

Enables splitting the output .cpp �les into multiple outputs. When a C++ �le exceeds the speci�ed
number of operations, a new �le will be created at the next function boundary. In addition, if the total
output code size exceeds the speci�ed value, VM_PARALLEL_BUILDS will be set to 1 by default in
the generated make �les, making parallel compilation possible. Using --output-split should have only
a trivial impact on model performance. But can greatly improve C++ compilation speed. The use of
ccache (set for you if present at con�gure time) is also more e�ective with this option.

This option is on by default with a value of 20000. To disable, pass with a value of 0.

--output-split-cfuncs statements

Enables splitting functions in the output .cpp �les into multiple functions. When a generated function
exceeds the speci�ed number of operations, a new function will be created. With --output-split, this
will enable the C++ compiler to compile faster, at a small loss in performance that gets worse with
decreasing split values. Note that this option is stronger than --output-split in the sense that --output-
split will not split inside a function.

Defaults to the value of --output-split, unless explicitly speci�ed.

--output-split-ctrace statements

Similar to --output-split-cfuncs, enables splitting trace functions in the output .cpp �les into multiple
functions.

Defaults to the value of --output-split, unless explicitly speci�ed.

-P

With -E, disable generation of `line markers and blank lines, similar to GCC -P �ag.

--pins64

Backward compatible alias for "--pins-bv 65". Note that's a 65, not a 64.

--pins-bv width

Speci�es SystemC inputs/outputs of greater than or equal to width bits wide should use sc_bv's instead
of uint32/vluint64_t's. The default is "--pins-bv 65", and the value must be less than or equal to 65.
Versions before Verilator 3.671 defaulted to "--pins-bv 33". The more sc_bv is used, the worse for
performance. Use the "/*verilator sc_bv*/" attribute to select speci�c ports to be sc_bv.

--pins-sc-uint

Speci�es SystemC inputs/outputs of greater than 2 bits wide should use sc_uint between 2 and 64.
When combined with the "--pins-sc-biguint" combination, it results in sc_uint being used between 2
and 64 and sc_biguint being used between 65 and 512.

16

Verilator 4.108 5 VERILATION ARGUMENTS

--pins-sc-biguint

Speci�es SystemC inputs/outputs of greater than 65 bits wide should use sc_biguint between 65 and
512, and sc_bv from 513 upwards. When combined with the "--pins-sc-uint" combination, it results
in sc_uint being used between 2 and 64 and sc_biguint being used between 65 and 512.

--pins-uint8

Speci�es SystemC inputs/outputs that are smaller than the --pins-bv setting and 8 bits or less should
use uint8_t instead of uint32_t. Likewise pins of width 9-16 will use uint16_t instead of uint32_t.

--pipe-�lter command

Rarely needed. Verilator will spawn the speci�ed command as a subprocess pipe, to allow the command
to perform custom edits on the Verilog code before it reaches Verilator.

Before reading each Verilog �le, Verilator will pass the �le name to the subprocess' stdin with 'read
"<�lename>"'. The �lter may then read the �le and perform any �ltering it desires, and feeds the
new �le contents back to Verilator on stdout by �rst emitting a line de�ning the length in bytes of the
�ltered output 'Content-Length: <bytes>', followed by the new �ltered contents. Output to stderr
from the �lter feeds through to Verilator's stdout and if the �lter exits with non-zero status Verilator
terminates. See the t/t_pipe_�lter test for an example.

To debug the output of the �lter, try using the -E option to see preprocessed output.

--pp-comments

With -E, show comments in preprocessor output.

--pre�x topname

Speci�es the name of the top level class and make�le. Defaults to V prepended to the name of the
--top switch, or V prepended to the �rst Verilog �lename passed on the command line.

--prof-cfuncs

Modify the created C++ functions to support pro�ling. The functions will be minimized to contain
one "basic" statement, generally a single always block or wire statement. (Note this will slow down
the executable by �5%.) Furthermore, the function name will be su�xed with the basename of the
Verilog module and line number the statement came from. This allows gprof or opro�le reports to be
correlated with the original Verilog source statements. See also verilator_profcfunc.

--prof-threads

Enable gantt chart data collection for threaded builds.

Verilator will record the start and end time of each macro-task across a number of calls to eval. (What
is a macro-task? See the Verilator internals document.)

When pro�ling is enabled, the simulation runtime will emit a blurb of pro�ling data in non-human-
friendly form. The verilator_gantt script will transform this into a nicer visual format and produce
some related statistics.

--protect-key key

Speci�es the private key for --protect-ids. For best security this key should be 16 or more random
bytes, a reasonable secure choice is the output of verilator --generate-key. Typically, a key would
be created by the user once for a given protected design library, then every Verilator run for subsequent
versions of that library would be passed the same --protect-key. Thus, if the input Verilog is similar
between library versions (Verilator runs), the Verilated code will likewise be mostly similar.

If --protect-key is not speci�ed and a key is needed, Verilator will generate a new key for every Verilator
run. As the key is not saved, this is best for security, but means every Verilator run will give vastly
di�erent output even for identical input, perhaps harming compile times (and certainly thrashing any
ccache).

17

Verilator 4.108 5 VERILATION ARGUMENTS

--protect-ids

Hash any private identi�ers (variable, module, and assertion block names that are not on the top level)
into hashed random-looking identi�ers, resulting after compilation in protected library binaries that
expose less design information. This hashing uses the provided or default --protect-key, see important
details there.

Verilator will also create a {pre�x}__idmap.xml �le which contains the mapping from the hashed
identi�ers back to the original identi�ers. This idmap �le is to be kept private, and is to assist
mapping any simulation runtime design assertions, coverage, or trace information, which will report
the hashed identi�ers, back to the original design's identi�er names.

Using DPI imports/exports is allowed and generally relatively safe in terms of information disclosed,
which is limited to the DPI function prototyptes. Use of the VPI is not recommended as many design
details may be exposed, and an INSECURE warning will be issued.

--protect-lib name

Produces C++, Verilog wrappers and a Make�le which can in turn produce a DPI library which can be
used by Verilator or other simulators along with the corresponding Verilog wrapper. The Make�le will
build both a static and dynamic version of the library named libname.a and libname.so respectively.
This is done because some simulators require a dynamic library, but the static library is arguably easier
to use if possible. --protect-lib implies --protect-ids.

This allows for the secure delivery of sensitive IP without the need for encrypted RTL (i.e. IEEE
P1735). See examples/make_protect_lib in the distribution for a demonstration of how to build and
use the DPI library.

When using --protect-lib it is advised to also use --timescale-override /1fs to ensure the model has
a time resolution that is always compatible with the time precision of the upper instantiating module.

--private

Opposite of --public. Is the default; this option exists for backwards compatibility.

--public

This is only for historical debug use. Using it may result in mis-simulation of generated clocks.

Declares all signals and modules public. This will turn o� signal optimizations as if all signals had a
/*verilator public*/ comments and inlining. This will also turn o� inlining as if all modules had a /*ver-
ilator public_module*/, unless the module speci�cally enabled it with /*verilator inline_module*/.

--public-�at-rw

Declares all variables, ports and wires public as if they had /*verilator public_�at_rw @ (<variable's_source_process_edge>)*/
comments. This will make them VPI accessible by their �at name, but not turn o� module inlining.
This is particularly useful in combination with --vpi. This may also in some rare cases result in mis-
simulation of generated clocks. Instead of this global switch, marking only those signals that need
public_�at_rw is typically signi�cantly better performing.

-pvalue+name=value

Overwrites the given parameter(s) of the toplevel module. See -G for a detailed description.

--quiet-exit

When exiting due to an error, do not display the "Exiting due to Errors" nor "Command Failed"
messages.

--relative-includes

When a �le references an include �le, resolve the �lename relative to the path of the referencing �le,
instead of relative to the current directory.

18

Verilator 4.108 5 VERILATION ARGUMENTS

--report-unopt�at

Extra diagnostics for UNOPTFLAT warnings. This includes for each loop, the 10 widest variables in
the loop, and the 10 most fanned out variables in the loop. These are candidates for splitting into
multiple variables to break the loop.

In addition produces a GraphViz DOT �le of the entire strongly connected components within the
source associated with each loop. This is produced irrespective of whether --dump-tree is set. Such
graphs may help in analyzing the problem, but can be very large indeed.

Various commands exist for viewing and manipulating DOT �les. For example the dot command can
be used to convert a DOT �le to a PDF for printing. For example:

dot -Tpdf -O Vt_unoptflat_simple_2_35_unoptflat.dot

will generate a PDF Vt_unopt�at_simple_2_35_unopt�at.dot.pdf from the DOT �le.

As an alternative, the xdot command can be used to view DOT �les interactively:

xdot Vt_unoptflat_simple_2_35_unoptflat.dot

--rr

Run Verilator and record with rr. See: rr-project.org.

--savable

Enable including save and restore functions in the generated model.

The user code must create a VerilatedSerialize or VerilatedDeserialze object then calling the << or
>> operators on the generated model and any other data the process needs saved/restored. These
functions are not thread safe, and are typically called only by a main thread.

For example:

void save_model(const char* filenamep) {

VerilatedSave os;

os.open(filenamep);

os << main_time; // user code must save the timestamp, etc

os << *topp;

}

void restore_model(const char* filenamep) {

VerilatedRestore os;

os.open(filenamep);

os >> main_time;

os >> *topp;

}

--sc

Speci�es SystemC output mode; see also --cc.

--stats

Creates a dump �le with statistics on the design in {pre�x}__stats.txt.

--stats-vars

Creates more detailed statistics, including a list of all the variables by size (plain --stats just gives a
count). See --stats, which is implied by this.

19

Verilator 4.108 5 VERILATION ARGUMENTS

--structs-packed

Converts all unpacked structures to packed structures and issues a UNPACKED warning. Currently
this is the default and --no-structs-packed will not work. Specifying this option allows for forward
compatibility when a future version of Verilator no longer always packs unpacked structures.

-sv

Speci�es SystemVerilog language features should be enabled; equivalent to "--language 1800-2017".
This option is selected by default, it exists for compatibility with other simulators.

+systemverilogext+ext

A synonym for +1800-2017ext+ext.

--threads threads

--no-threads

With --threads 0 or --no-threads, the default, the generated model is not thread safe. With --threads 1,
the generated model is single threaded but may run in a multithreaded environment. With --threads
N, where N >= 2, the model is generated to run multithreaded on up to N threads. See �19.

--threads-dpi all

--threads-dpi none

--threads-dpi pure

When using --threads, controls which DPI imported tasks and functions are considered thread safe.

With --threads-dpi all, enable Verilator to assume all DPI imports are threadsafe, and to use thread-
local storage for communication with DPI, potentially improving performance. Any DPI libraries need
appropriate mutexes to avoid unde�ned behavior.

With --threads-dpi none, Verilator assume DPI imports are not thread safe, and Verilator will serialize
calls to DPI imports by default, potentially harming performance.

With --threads-dpi pure, the default, Verilator assumes DPI pure imports are threadsafe, but non-pure
DPI imports are not.

--threads-max-mtasks value

Rarely needed. When using --threads, specify the number of mtasks the model is to be partitioned
into. If unspeci�ed, Verilator approximates a good value.

--timescale timeunit/timeprecision

Sets default timescale, timeunit and timeprecision for when `timescale does not occur in sources.
Default is "1ps/1ps" (to match SystemC). This is overridden by --timescale-override.

--timescale-override timeunit/timeprecision

--timescale-override /timeprecision

Overrides all `timescales in sources. The timeunit may be left empty to specify only to override the
timeprecision, e.g. "/1fs".

The time precision must be consistent with SystemC's sc_set_time_resolution, or the C++ code
instantiating the Verilated module. As 1fs is the �nest time precision it may be desirable to always
use a precision of 1fs.

--top topname

--top-module topname

When the input Verilog contains more than one top level module, speci�es the name of the Verilog
module to become the top level module, and sets the default for --pre�x if not explicitly speci�ed. This
is not needed with standard designs with only one top. See also the MULTITOP warning section.

20

Verilator 4.108 5 VERILATION ARGUMENTS

--trace

Adds waveform tracing code to the model using VCD format. This overrides --trace-fst.

Verilator will generate additional {pre�x}__Trace*.cpp �les that will need to be compiled. In addition
verilated_vcd_sc.cpp (for SystemC traces) or verilated_vcd_c.cpp (for both) must be compiled and
linked in. If using the Verilator generated Make�les, these �les will be added to the source �le lists for
you. If you are not using the Verilator Make�les, you will need to add these to your Make�le manually.

Having tracing compiled in may result in some small performance losses, even when tracing is not
turned on during model execution.

See also --trace-threads.

--trace-coverage

With --trace and --coverage-*, enable tracing to include a traced signal for every --coverage-line or
--coverage-user inserted coverage point, to assist in debugging coverage items. Note --coverage-toggle
does not get additional signals added, as the original signals being toggle-analyzed are already visible.

The added signal will be a 32-bit value which will increment on each coverage occurrence. Due to this,
this option may greatly increase trace �le sizes and reduce simulation speed.

--trace-depth levels

Specify the number of levels deep to enable tracing, for example --trace-level 1 to only see the top
level's signals. Defaults to the entire model. Using a small number will decrease visibility, but greatly
improve simulation performance and trace �le size.

--trace-fst

Enable FST waveform tracing in the model. This overrides --trace. See also --trace-threads.

--trace-max-array depth

Rarely needed. Specify the maximum array depth of a signal that may be traced. Defaults to 32, as
tracing large arrays may greatly slow traced simulations.

--trace-max-width width

Rarely needed. Specify the maximum bit width of a signal that may be traced. Defaults to 256, as
tracing large vectors may greatly slow traced simulations.

--no-trace-params

Disable tracing of parameters.

--trace-structs

Enable tracing to show the name of packed structure, union, and packed array �elds, rather than a
single combined packed bus. Due to VCD �le format constraints this may result in signi�cantly slower
trace times and larger trace �les.

--trace-threads threads

Enable waveform tracing using separate threads. This is typically faster in simulation runtime but uses
more total compute. This option is independent of, and works with, both --trace and --trace-fst.
Di�erent trace formats can take advantage of more trace threads to varying degrees. Currently VCD
tracing can utilize at most --trace-threads 1, and FST tracing can utilize at most --trace-threads 2.
This overrides --no-threads.

--trace-underscore

Enable tracing of signals that start with an underscore. Normally, these signals are not output during
tracing. See also --coverage-underscore.

21

Verilator 4.108 5 VERILATION ARGUMENTS

-Uvar

Unde�nes the given preprocessor symbol.

--unroll-count loops

Rarely needed. Speci�es the maximum number of loop iterations that may be unrolled. See also
BLKLOOPINIT warning.

--unroll-stmts statements

Rarely needed. Speci�es the maximum number of statements in a loop for that loop to be unrolled.
See also BLKLOOPINIT warning.

--unused-regexp regexp

Rarely needed. Speci�es a simple regexp with * and ? that if a signal name matches will suppress the
UNUSED warning. Defaults to "*unused*". Setting it to "" disables matching.

-V

Shows the verbose version, including con�guration information compiled into Verilator. (Similar to
perl -V.) See also --getenv.

-v �lename

Read the �lename as a Verilog library. Any modules in the �le may be used to resolve instances in the
top level module, else ignored. Note -v is fairly standard across Verilog tools.

--no-verilate

When using --build, disable generation of C++/SystemC code, and execute only the build. This can
be useful for rebuilding Verilated code produced by a previous invocation of Verilator.

+verilog1995ext+ext

+verilog2001ext+ext

Synonyms for +1364-1995ext+ext and +1364-2001ext+ext respectively

--version

Displays program version and exits.

--vpi

Enable use of VPI and linking against the verilated_vpi.cpp �les.

--waiver-output <�lename>

Generate a waiver �le which contains all waiver statements to suppress the warnings emitted during this
Verilator run. This in particular is useful as a starting point for solving linter warnings or suppressing
them systematically.

The generated �le is in the Verilator Con�guration format, see �20, and can directly be consumed by
Verilator. The standard �le extension is .vlt.

-Wall

Enable all code style warnings, including code style warnings that are normally disabled by default.
Equivalent to "-Wwarn-lint -Wwarn-style". Excludes some specialty warnings, i.e. IMPERFECTSCH.

-Werror-message

Promote the speci�ed warning message into an error message. This is generally to discourage users
from violating important site-wide rules, for example -Werror-NOUNOPTFLAT.

22

Verilator 4.108 5 VERILATION ARGUMENTS

-Wfuture-message

Rarely needed. Suppress unknown Verilator comments or warning messages with the given message
code. This is used to allow code written with pragmas for a later version of Verilator to run under
a older version; add -Wfuture- arguments for each message code or comment that the new version
supports which the older version does not support.

-Wno-message

Disable the speci�ed warning/error message. This will override any lint_on directives in the source,
i.e. the warning will still not be printed.

-Wno-context

Disable showing the suspected context of the warning message by quoting the source text at the
suspected location. This can be used to appease tools which process the warning messages but may
get confused by lines from the original source.

-Wno-fatal

When warnings are detected, print them, but do not terminate Verilator.

Having warning messages in builds is sloppy. It is strongly recommended you cleanup your code, use
inline lint_o�, or use -Wno-... �ags rather than using this option.

-Wno-lint

Disable all lint related warning messages, and all style warnings. This is equivalent to "-Wno-
ALWCOMBORDER -Wno-BSSPACE -Wno-CASEINCOMPLETE -Wno-CASEOVERLAP -Wno-CASEX
-Wno-CASTCONST -Wno-CASEWITHX -Wno-CMPCONST -Wno-COLONPLUS -Wno-ENDLABEL
-Wno-IMPLICIT -Wno-LITENDIAN -Wno-PINCONNECTEMPTY -Wno-PINMISSING -Wno-SYNCASYNCNET
-Wno-UNDRIVEN -Wno-UNSIGNED -Wno-UNUSED -Wno-WIDTH" plus the list shown for Wno-
style.

It is strongly recommended you cleanup your code rather than using this option, it is only intended to
be use when running test-cases of code received from third parties.

-Wno-style

Disable all code style related warning messages (note by default they are already disabled). This is
equivalent to "-Wno-DECLFILENAME -Wno-DEFPARAM -Wno-IMPORTSTAR -Wno-INCABSPATH
-Wno-PINCONNECTEMPTY -Wno-PINNOCONNECT -Wno-SYNCASYNCNET -Wno-UNDRIVEN
-Wno-UNUSED -Wno-VARHIDDEN".

-Wpedantic

Warn on any construct demanded by IEEE, and disable all Verilator extensions that may interfere with
IEEE compliance to the standard de�ned with --default-language (etc). Similar to GCC's -Wpedantic.
Rarely used, and intended only for strict compliance tests.

-Wwarn-message

Enables the speci�ed warning message.

-Wwarn-lint

Enable all lint related warning messages (note by default they are already enabled), but do not af-
fect style messages. This is equivalent to "-Wwarn-ALWCOMBORDER -Wwarn-BSSPACE -Wwarn-
CASEINCOMPLETE -Wwarn-CASEOVERLAP -Wwarn-CASEX -Wwarn-CASTCONST -Wwarn-CASEWITHX
-Wwarn-CMPCONST -Wwarn-COLONPLUS -Wwarn-ENDLABEL -Wwarn-IMPLICIT -Wwarn-LITENDIAN
-Wwarn-PINMISSING -Wwarn-REALCVT -Wwarn-UNSIGNED -Wwarn-WIDTH".

-Wwarn-style

Enable all code style related warning messages. This is equivalent to "-Wwarn ASSIGNDLY -Wwarn-
DECLFILENAME -Wwarn-DEFPARAM -Wwarn-INCABSPATH -Wwarn-PINNOCONNECT -Wwarn-
SYNCASYNCNET -Wwarn-UNDRIVEN -Wwarn-UNUSED -Wwarn-VARHIDDEN".

23

Verilator 4.108 5 VERILATION ARGUMENTS

--x-assign 0

--x-assign 1

--x-assign fast (default)

--x-assign unique

Controls the two-state value that is substituted when an explicit X value is encountered in the source.
--x-assign fast, the default, converts all Xs to whatever is best for performance. --x-assign 0

converts all Xs to 0s, and is also fast. --x-assign 1 converts all Xs to 1s, this is nearly as fast as 0,
but more likely to �nd reset bugs as active high logic will �re. Using --x-assign unique will result
in all explicit Xs being replaced by a constant value determined at runtime. The value is determined
by calling a function at initialization time. This enables randomization of Xs with di�erent seeds on
di�erent executions. This method is the slowest, but safest for �nding reset bugs.

If using --x-assign unique, you may want to seed your random number generator such that each regres-
sion run gets a di�erent randomization sequence. The simplest is to use the +verilator+seed runtime
option. Alternatively use the system's srand48() or for Windows srand() function to do this. You'll
probably also want to print any seeds selected, and code to enable rerunning with that same seed so
you can reproduce bugs.

Note. This option applies only to values which are explicitly written as X in the Verilog source code.
Initial values of clocks are set to 0 unless --x-initial-edge is speci�ed. Initial values of all other state
holding variables are controlled with --x-initial.

--x-initial 0

--x-initial fast

--x-initial unique (default)

Controls the two-state value that is used to initialize variables that are not otherwise initialized.

--x-initial 0, initializes all otherwise uninitialized variables to zero.

--x-initial unique, the default, initializes variables using a function, which determines the value to
use each initialization. This gives greatest �exibility and allows �nding reset bugs. See �23.

--x-initial fast, is best for performance, and initializes all variables to a state Verilator determines
is optimal. This may allow further code optimizations, but will likely hide any code bugs relating to
missing resets.

Note. This option applies only to initial values of variables. Initial values of clocks are set to 0 unless
--x-initial-edge is speci�ed.

--x-initial-edge

Enables emulation of event driven simulators which generally trigger an edge on a transition from X
to 1 (posedge) or X to 0 (negedge). Thus the following code, where rst_n is uninitialized would set
res_n to 1'b1 when rst_n is �rst set to zero:

reg res_n = 1'b0;

always @(negedge rst_n) begin

if (rst_n == 1'b0) begin

res_n <= 1'b1;

end

end

24

Verilator 4.108 6 SIMULATION RUNTIME ARGUMENTS

In Verilator, by default, uninitialized clocks are given a value of zero, so the above always block would
not trigger.

While it is not good practice, there are some designs that rely on X � 0 triggering a negedge,
particularly in reset sequences. Using --x-initial-edge with Verilator will replicate this behavior. It will
also ensure that X � 1 triggers a posedge.

Note. Some users have reported that using this option can a�ect convergence, and that it may be
necessary to use --converge-limit to increase the number of convergence iterations. This may be another
indication of problems with the modeled design that should be addressed.

--xml-only

Create XML output only, do not create any other output.

The XML format is intended to be used to leverage Verilator's parser and elaboration to feed to other
downstream tools. Be aware that the XML format is still evolving; there will be some changes in future
versions.

--xml-output �lename

Filename for XML output �le. Using this option automatically sets --xml-only.

-y dir

Add the directory to the list of directories that should be searched for include �les or libraries. The
three �ags -y, +incdir and -I have similar e�ect; +incdir and +y are fairly standard across Verilog tools
while -I is used by many C++ compilers.

Verilator defaults to the current directory ("-y .") and any speci�ed --Mdir, though these default paths
are used after any user speci�ed directories. This allows '-y "$(pwd)"' to be used if absolute �lenames
are desired for error messages instead of relative �lenames.

6 SIMULATION RUNTIME ARGUMENTS

The following are the arguments that may be passed to a Verilated executable, provided that executable
calls Verilated::commandArgs().

All simulation runtime arguments begin with +verilator, so that the user's executable may skip over all
+verilator arguments when parsing its command line.

+verilator+debug

Enable simulation runtime debugging. Equivalent to +verilator+debugi+4.

+verilator+debugi+value

Enable simulation runtime debugging at the provided level.

+verilator+error+limit+value

Set number of non-fatal errors (e.g. assertion failures) before exiting simulation runtime. Also a�ects
number of $stop calls needed before exit. Defaults to 1.

+verilator+help

Display help and exit.

+verilator+prof+threads+�le+�lename

When a model was Verilated using --prof-threads, sets the simulation runtime �lename to dump to.
Defaults to "pro�le_threads.dat".

25

Verilator 4.108 7 EXAMPLE C++ EXECUTION

+verilator+prof+threads+start+value

When a model was Verilated using --prof-threads, the simulation runtime will wait until $time is at
this value (expressed in units of the time precision), then start the pro�ling warmup, then capturing.
Generally this should be set to some time that is well within the normal operation of the simulation,
i.e. outside of reset. If 0, the dump is disabled. Defaults to 1.

+verilator+prof+threads+window+value

When a model was Verilated using --prof-threads, after $time reaches +verilator+prof+threads+start,
Verilator will warm up the pro�ling for this number of eval() calls, then will capture the pro�ling of
this number of eval() calls. Defaults to 2, which makes sense for a single-clock-domain module where
it's typical to want to capture one posedge eval() and one negedge eval().

+verilator+rand+reset+value

When a model was Verilated using "-x-initial unique", sets the simulation runtime initialization tech-
nique. 0 = Reset to zeros. 1 = Reset to all-ones. 2 = Randomize. See �23.

+verilator+seed+value

For $random and "-x-initial unique", set the simulation runtime random seed value. If zero or not
speci�ed picks a value from the system random number generator.

+verilator+noassert

Disable assert checking per runtime argument. This is the same as calling "Verilated::assertOn(false)"
in the model.

+verilator+V

Shows the verbose version, including con�guration information.

+verilator+version

Displays program version and exits.

7 EXAMPLE C++ EXECUTION

We'll compile this example into C++.

mkdir test_our

cd test_our

cat >our.v <<'EOF'

module our;

initial begin $display("Hello World"); $finish; end

endmodule

EOF

cat >sim_main.cpp <<'EOF'

#include "Vour.h"

#include "verilated.h"

int main(int argc, char** argv, char** env) {

Verilated::commandArgs(argc, argv);

Vour* top = new Vour;

26

Verilator 4.108 8 EXAMPLE SYSTEMC EXECUTION

while (!Verilated::gotFinish()) { top->eval(); }

delete top;

exit(0);

}

EOF

See the README in the source kit for various ways to install or point to Verilator binaries. In brief, if
you installed Verilator using the package manager of your operating system, or did a "make install" to place
Verilator into your default path, you do not need anything special in your environment, and should not have
VERILATOR_ROOT set. However, if you installed Verilator from sources and want to run Verilator out of
where you compiled Verilator, you need to point to the kit:

See above; don't do this if using an OS-distributed Verilator

export VERILATOR_ROOT=/path/to/where/verilator/was/installed

export PATH=$VERILATOR_ROOT/bin:$PATH

Now we run Verilator on our little example.

verilator -Wall --cc our.v --exe --build sim_main.cpp

We can see the source code under the "obj_dir" directory. See the FILES section below for descriptions of
some of the �les that were created.

ls -l obj_dir

(Verilator included a default compile rule and link rule, since we used --exe and passed a .cpp �le on the
Verilator command line. Verilator also then used make to build a �nal executable, since we used --build. You
can also write your own compile rules, and run make yourself as we'll show in the SYSTEMC section.

And now we run it:

obj_dir/Vour

And we get as output:

Hello World

- our.v:2: Verilog $finish

Really, you're better o� writing a Make�le to do all this for you. Then, when your source changes it will
automatically run all of these steps; to aid this Verilator can create a make�le dependency �le. See the
examples directory in the distribution.

8 EXAMPLE SYSTEMC EXECUTION

This is an example similar to the above, but using SystemC.

27

Verilator 4.108 8 EXAMPLE SYSTEMC EXECUTION

mkdir test_our_sc

cd test_our_sc

cat >our.v <<'EOF'

module our (clk);

input clk; // Clock is required to get initial activation

always @ (posedge clk)

begin $display("Hello World"); $finish; end

endmodule

EOF

cat >sc_main.cpp <<'EOF'

#include "Vour.h"

int sc_main(int argc, char** argv) {

Verilated::commandArgs(argc, argv);

sc_clock clk("clk", 10, SC_NS, 0.5, 3, SC_NS, true);

Vour* top;

top = new Vour("top");

top->clk(clk);

while (!Verilated::gotFinish()) { sc_start(1, SC_NS); }

delete top;

exit(0);

}

EOF

See the README in the source kit for various ways to install or point to Verilator binaries. In brief, if
you installed Verilator using the package manager of your operating system, or did a "make install" to place
Verilator into your default path, you do not need anything special in your environment, and should not have
VERILATOR_ROOT set. However, if you installed Verilator from sources and want to run Verilator out of
where you compiled Verilator, you need to point to the kit:

See above; don't do this if using an OS-distributed Verilator

export VERILATOR_ROOT=/path/to/where/verilator/was/installed

export PATH=$VERILATOR_ROOT/bin:$PATH

Now we run Verilator on our little example.

verilator -Wall --sc our.v

We then can compile it

make -j -C obj_dir -f Vour.mk Vour__ALL.a

make -j -C obj_dir -f Vour.mk ../sc_main.o verilated.o

And link with SystemC. Note your path to the libraries may vary, depending on the operating system.

cd obj_dir

28

Verilator 4.108 9 EVALUATION LOOP

export SYSTEMC_LIBDIR=/path/to/where/libsystemc.a/exists

export LD_LIBRARY_PATH=$SYSTEMC_LIBDIR:$LD_LIBRARY_PATH

Might be needed if SystemC 2.3.0

export SYSTEMC_CXX_FLAGS=-pthread

g++ -L$SYSTEMC_LIBDIR ../sc_main.o Vour__ALL.a verilated.o \

-o Vour -lsystemc

And now we run it

cd ..

obj_dir/Vour

And we get the same output as the C++ example:

Hello World

- our.v:2: Verilog $finish

Really, you're better o� using a Make�le to do all this for you. Then, when your source changes it will
automatically run all of these steps. See the examples directory in the distribution.

9 EVALUATION LOOP

When using SystemC, evaluation of the Verilated model is managed by the SystemC kernel, and for the most
part can be ignored. When using C++, the user must call eval(), or eval_step() and eval_end_step().

1. When there is a single design instantiated at the C++ level that needs to evaluate, just call designp-
>eval().

2. When there are multiple designs instantiated at the C++ level that need to evaluate, call �rst_designp-
>eval_step() then ->eval_step() on all other designs. Then call ->eval_end_step() on the �rst design then
all other designs. If there is only a single design, you would call eval_step() then eval_end_step(); in fact
eval() described above is just a wrapper which calls these two functions.

When eval() is called Verilator looks for changes in clock signals and evaluates related sequential always
blocks, such as computing always_� @ (posedge...) outputs. Then Verilator evaluates combinatorial logic.

Note combinatorial logic is not computed before sequential always blocks are computed (for speed reasons).
Therefore it is best to set any non-clock inputs up with a separate eval() call before changing clocks.

Alternatively, if all always_� statements use only the posedge of clocks, or all inputs go directly to always_�
statements, as is typical, then you can change non-clock inputs on the negative edge of the input clock, which
will be faster as there will be fewer eval() calls.

For more information on evaluation, see docs/internals.adoc in the distribution.

29

Verilator 4.108 10 BENCHMARKING & OPTIMIZATION

10 BENCHMARKING & OPTIMIZATION

For best performance, run Verilator with the "-O3 --x-assign fast --x-initial fast --noassert" �ags. The -O3
�ag will require longer time to run Verilator, and "--x-assign fast --x-initial fast" may increase the risk of
reset bugs in trade for performance; see the above documentation for these �ags.

If using Verilated multithreaded, use numactl to ensure you are using non-con�icting hardware resources.
See �19.

Minor Verilog code changes can also give big wins. You should not have any UNOPTFLAT warnings from
Verilator. Fixing these warnings can result in huge improvements; one user �xed their one UNOPTFLAT
warning by making a simple change to a clock latch used to gate clocks and gained a 60% performance
improvement.

Beyond that, the performance of a Verilated model depends mostly on your C++ compiler and size of your
CPU's caches. Experience shows that large models are often limited by the size of the instruction cache, and
as such reducing code size if possible can be bene�cial.

The supplied $VERILATOR_ROOT/include/verilated.mk �le uses the OPT, OPT_FAST, OPT_SLOW
and OPT_GLOBAL variables to control optimization. You can set these when compiling the output of
Verilator with Make, for example:

make OPT_FAST="-Os -march=native" -f Vour.mk Vour__ALL.a

OPT_FAST speci�es optimization �ags for those parts of the model that are on the fast path. This is mostly
code that is executed every cycle. OPT_SLOW applies to slow-path code, which executes rarely, often only
once at the beginning or end of simulation. Note that OPT_SLOW is ignored if VM_PARALLEL_BUILDS
is not 1, in which case all generated code will be compiled in a single compilation unit using OPT_FAST.
See also the --output-split option. The OPT_GLOBAL variable applies to common code in the runtime
library used by Verilated models (shipped in $VERILATOR_ROOT/include). Additional C++ �les passed
on the verilator command line use OPT_FAST. The OPT variable applies to all compilation units in addition
to the speci�c OPT_* variables described above.

You can also use the -CFLAGS and/or -LDFLAGS options on the verilator command line to pass �ags
directly to the compiler or linker.

The default values of the OPT_* variables are chosen to yield good simulation speed with reasonable C++
compilation times. To this end, OPT_FAST is set to "-Os" by default. Higher optimization such as "-
O2" or "-O3" may help (though often they provide only a very small performance bene�t), but compile
times may be excessively large even with medium sized designs. Compilation times can be improved at the
expense of simulation speed by reducing optimization, for example with OPT_FAST="-O0". Often good
simulation speed can be achieved with OPT_FAST="-O1 -fstrict-aliasing" but with improved compilation
times. Files controlled by OPT_SLOW have little e�ect on performance and therefore OPT_SLOW is
empty by default (equivalent to "-O0") for improved compilation speed. In common use-cases there should
be little bene�t in changing OPT_SLOW. OPT_GLOBAL is set to "-Os" by default and there should rarely
be a need to change it. As the runtime library is small in comparison to a lot of Verilated models, disabling
optimization on the runtime library should not have a serious e�ect on overall compilation time, but may
have detrimental e�ect on simulation speed, especially with tracing. In addition to the above, for best results
use OPT="-march=native", the latest Clang compiler (about 10% faster than GCC), and link statically.

Generally the answer to which optimization level gives the best user experience depends on the use case
and some experimentation can pay dividends. For a speedy debug cycle during development, especially on

30

Verilator 4.108 11 FILES

large designs where C++ compilation speed can dominate, consider using lower optimization to get to an
executable faster. For throughput oriented use cases, for example regressions, it is usually worth spending
extra compilation time to reduce total CPU time.

If you will be running many simulations on a single model, you can investigate pro�le guided optimization.
With GCC, using -fpro�le-arcs, then -fbranch-probabilities will yield another 15% or so.

Modern compilers also support link-time optimization (LTO), which can help especially if you link in DPI
code. To enable LTO on GCC, pass "-�to" in both compilation and link. Note LTO may cause excessive
compile times on large designs.

Unfortunately, using the optimizer with SystemC �les can result in compilation taking several minutes. (The
SystemC libraries have many little inlined functions that drive the compiler nuts.)

If you are using your own make�les, you may want to compile the Verilated code with -DVL_INLINE_OPT=inline.
This will inline functions, however this requires that all cpp �les be compiled in a single compiler run.

You may uncover further tuning possibilities by pro�ling the Verilog code. Use Verilator's --prof-cfuncs, then
GCC's -g -pg. You can then run either opro�le or gprof to see where in the C++ code the time is spent.
Run the gprof output through verilator_profcfunc and it will tell you what Verilog line numbers on which
most of the time is being spent.

When done, please let the author know the results. We like to keep tabs on how Verilator compares, and
may be able to suggest additional improvements.

11 FILES

All output �les are placed in the output directory speci�ed with the --Mdir option, or "obj_dir" if not
speci�ed.

Verilator creates the following �les in the output directory:

For --make gmake, it creates:

{prefix}.mk // Make include file for compiling

{prefix}_classes.mk // Make include file with class names

{prefix}_hier.mk // Make file for hierarchy blocks

{prefix}_hierMkArgs.f // Arguments for hierarchical Verilation.

For --make cmake, it creates:

{prefix}.cmake // CMake include script for compiling

{prefix}_hierCMakeArgs.f // Arguments for hierarchical Verilation.

For -cc and -sc mode, it also creates:

{prefix}.cpp // Top level C++ file

{prefix}.h // Top level header

31

Verilator 4.108 12 ENVIRONMENT

{prefix}__Slow{__n}.cpp // Constructors and infrequent cold routines

{prefix}{__n}.cpp // Additional top C++ files (--output-split)

{prefix}{each_verilog_module}.cpp // Lower level internal C++ files

{prefix}{each_verilog_module}.h // Lower level internal header files

{prefix}{each_verilog_module}{__n}.cpp // Additional lower C++ files (--output-split)

For --hierarchy mode, it creates: {pre�x}__hierVer.d // Make dependencies of the top module in the
hierarchical Verilation {pre�x}__hier.dir/ // Directory to store .dot, .vpp, .tree of the top module in the
hierarchical Verilation V{hier_block}/ // Directory to Verilate each hierarchy block

In certain debug and other modes, it also creates:

{prefix}.xml // XML tree information (--xml)

{prefix}__Dpi.cpp // DPI import and export wrappers

{prefix}__Dpi.h // DPI import and export declarations

{prefix}__Inlines.h // Inline support functions

{prefix}__Syms.cpp // Global symbol table C++

{prefix}__Syms.h // Global symbol table header

{prefix}__Trace__Slow{__n}.cpp // Wave file generation code (--trace)

{prefix}__Trace{__n}.cpp // Wave file generation code (--trace)

{prefix}__cdc.txt // Clock Domain Crossing checks (--cdc)

{prefix}__stats.txt // Statistics (--stats)

{prefix}__idmap.txt // Symbol demangling (--protect-ids)

It also creates internal �les that can be mostly ignored:

{mod_prefix}_{each_verilog_module}{__n}.vpp // Pre-processed verilog

{prefix}__ver.d // Make dependencies (-MMD)

{prefix}__verFiles.dat // Timestamps for skip-identical

{prefix}{misc}.dot // Debugging graph files (--debug)

{prefix}{misc}.tree // Debugging files (--debug)

After running Make, the C++ compiler may produce the following:

verilated{misc}.d // Intermediate dependencies

verilated{misc}.o // Intermediate objects

{mod_prefix}{misc}.d // Intermediate dependencies

{mod_prefix}{misc}.o // Intermediate objects

{prefix} // Final executable (w/--exe argument)

{prefix}__ALL.a // Library of all Verilated objects

{prefix}__ALL.cpp // Include of all code for single compile

{prefix}{misc}.d // Intermediate dependencies

{prefix}{misc}.o // Intermediate objects

12 ENVIRONMENT

LD_LIBRARY_PATH

A generic Linux/OS variable specifying what directories have shared object (.so) �les. This path should
include SystemC and any other shared objects needed at simulation runtime.

32

Verilator 4.108 12 ENVIRONMENT

MAKE

Names the executable of the make command invoked when using the --build option. Some operating
systems may require "gmake" to this variable to launch GNU make. If this variable is not speci�ed,
"make" is used.

OBJCACHE

Optionally speci�es a caching or distribution program to place in front of all runs of the C++ compiler.
For example, "ccache". If using distcc or icecc/icecream, they would generally be run under cache; see
the documentation for those programs. If OBJCACHE is not set, and at con�gure time ccache was
present, ccache will be used as a default.

SYSTEMC

Deprecated. Used only if SYSTEMC_INCLUDE or SYSTEMC_LIBDIR is not set. If set, speci�es the
directory containing the SystemC distribution. If not speci�ed, it will come from a default optionally
speci�ed at con�gure time (before Verilator was compiled).

SYSTEMC_ARCH

Deprecated. Used only if SYSTEMC_LIBDIR is not set. Speci�es the architecture name used by the
SystemC kit. This is the part after the dash in the lib-{...} directory name created by a 'make' in
the SystemC distribution. If not set, Verilator will try to intuit the proper setting, or use the default
optionally speci�ed at con�gure time (before Verilator was compiled).

SYSTEMC_CXX_FLAGS

Speci�es additional �ags that are required to be passed to GCC when building the SystemC model.
System 2.3.0 may need this set to "-pthread".

SYSTEMC_INCLUDE

If set, speci�es the directory containing the systemc.h header �le. If not speci�ed, it will come from
a default optionally speci�ed at con�gure time (before Verilator was compiled), or computed from
SYSTEMC/include.

SYSTEMC_LIBDIR

If set, speci�es the directory containing the libsystemc.a library. If not speci�ed, it will come from
a default optionally speci�ed at con�gure time (before Verilator was compiled), or computed from
SYSTEMC/lib-SYSTEMC_ARCH.

VERILATOR_BIN

If set, speci�es an alternative name of the verilator binary. May be used for debugging and selecting
between multiple operating system builds.

VERILATOR_COVERAGE_BIN

If set, speci�es an alternative name of the verilator_coverage binary. May be used for debugging
and selecting between multiple operating system builds.

VERILATOR_GDB

If set, the command to run when using the --gdb option, such as "ddd". If not speci�ed, it will use
"gdb".

VERILATOR_ROOT

Speci�es the directory containing the distribution kit. This is used to �nd the executable, Perl library,
and include �les. If not speci�ed, it will come from a default optionally speci�ed at con�gure time
(before Verilator was compiled). It should not be speci�ed if using a pre-compiled Verilator package
as the hard-coded value should be correct.

33

Verilator 4.108 13 CONNECTING TO C++

13 CONNECTING TO C++

Verilator creates a pre�x.h and pre�x.cpp �le for the top level module, together with additional .h and .cpp
�les for internals. See the examples directory in the kit for examples.

After the model is created, there will be a pre�x.mk �le that may be used with Make to produce a pre-

�x__ALL.a �le with all required objects in it. This is then linked with the user's C++ main loop to create
the simulation executable.

The user must write the C++ main loop of the simulation. Here is a simple example:

#include <verilated.h> // Defines common routines

#include <iostream> // Need std::cout

#include "Vtop.h" // From Verilating "top.v"

Vtop *top; // Instantiation of module

vluint64_t main_time = 0; // Current simulation time

// This is a 64-bit integer to reduce wrap over issues and

// allow modulus. This is in units of the timeprecision

// used in Verilog (or from --timescale-override)

double sc_time_stamp () { // Called by $time in Verilog

return main_time; // converts to double, to match

// what SystemC does

}

int main(int argc, char** argv) {

Verilated::commandArgs(argc, argv); // Remember args

top = new Vtop; // Create instance

top->reset_l = 0; // Set some inputs

while (!Verilated::gotFinish()) {

if (main_time > 10) {

top->reset_l = 1; // Deassert reset

}

if ((main_time % 10) == 1) {

top->clk = 1; // Toggle clock

}

if ((main_time % 10) == 6) {

top->clk = 0;

}

top->eval(); // Evaluate model

cout << top->out << endl; // Read a output

main_time++; // Time passes...

}

34

Verilator 4.108 15 DIRECT PROGRAMMING INTERFACE (DPI)

top->final(); // Done simulating

// // (Though this example doesn't get here)

delete top;

}

Note signals are read and written as member variables of the model. You call the eval() method to evaluate
the model. When the simulation is complete call the �nal() method to execute any SystemVerilog �nal
blocks, and complete any assertions. See �9.

14 CONNECTING TO SYSTEMC

Verilator will convert the top level module to a SC_MODULE. This module will plug directly into a SystemC
netlist.

The SC_MODULE gets the same pinout as the Verilog module, with the following type conversions: Pins
of a single bit become bool. Pins 2-32 bits wide become uint32_t's. Pins 33-64 bits wide become sc_bv's or
vluint64_t's depending on the --no-pins64 switch. Wider pins become sc_bv's. (Uints simulate the fastest
so are used where possible.)

Lower modules are not pure SystemC code. This is a feature, as using the SystemC pin interconnect scheme
everywhere would reduce performance by an order of magnitude.

15 DIRECT PROGRAMMING INTERFACE (DPI)

Verilator supports SystemVerilog Direct Programming Interface import and export statements. Only the
SystemVerilog form ("DPI-C") is supported, not the original Synopsys-only DPI.

DPI Example

In the SYSTEMC example above, if you wanted to import C++ functions into Verilog, put in our.v:

import "DPI-C" function int add (input int a, input int b);

initial begin

$display("%x + %x = %x", 1, 2, add(1,2));

endtask

Then after Verilating, Verilator will create a �le Vour__Dpi.h with the prototype to call this function:

extern int add (int a, int b);

From the sc_main.cpp �le (or another .cpp �le passed to the Verilator command line, or the link), you'd
then:

35

Verilator 4.108 15 DIRECT PROGRAMMING INTERFACE (DPI)

#include "svdpi.h"

#include "Vour__Dpi.h"

int add(int a, int b) { return a+b; }

DPI System Task/Functions

Verilator extends the DPI format to allow using the same scheme to e�ciently add system functions. Simply
use a dollar-sign pre�xed system function name for the import, but note it must be escaped.

export "DPI-C" function integer \$myRand;

initial $display("myRand=%d", $myRand());

Going the other direction, you can export Verilog tasks so they can be called from C++:

export "DPI-C" task publicSetBool;

task publicSetBool;

input bit in_bool;

var_bool = in_bool;

endtask

Then after Verilating, Verilator will create a �le Vour__Dpi.h with the prototype to call this function:

extern void publicSetBool(svBit in_bool);

From the sc_main.cpp �le, you'd then:

#include "Vour__Dpi.h"

publicSetBool(value);

Or, alternatively, call the function under the design class. This isn't DPI compatible but is easier to read
and better supports multiple designs.

#include "Vour__Dpi.h"

Vour::publicSetBool(value);

// or top->publicSetBool(value);

Note that if the DPI task or function accesses any register or net within the RTL, it will require a scope to
be set. This can be done using the standard functions within svdpi.h, after the module is instantiated, but
before the task(s) and/or function(s) are called.

For example, if the top level module is instantiated with the name "dut" and the name references within
tasks are all hierarchical (dotted) names with respect to that top level module, then the scope could be set
with

36

Verilator 4.108 15 DIRECT PROGRAMMING INTERFACE (DPI)

#include "svdpi.h"

...

svSetScope(svGetScopeFromName("TOP.dut"));

(Remember that Verilator adds a "TOP" to the top of the module hierarchy.)

Scope can also be set from within a DPI imported C function that has been called from Verilog by querying
the scope of that function. See the sections on DPI Context Functions and DPI Header Isolation below and
the comments within the svdpi.h header for more information.

DPI Display Functions

Verilator allows writing $display like functions using this syntax:

import "DPI-C" function void

\$my_display(input string formatted /*verilator sformat*/);

The /*verilator sformat*/ indicates that this function accepts a $display like format speci�er followed by
any number of arguments to satisfy the format.

DPI Context Functions

Verilator supports IEEE DPI Context Functions. Context imports pass the simulator context, including
calling scope name, and �lename and line number to the C code. For example, in Verilog:

import "DPI-C" context function int dpic_line();

initial $display("This is line %d, again, line %d\n", `line, dpic_line());

This will call C++ code which may then use the svGet* functions to read information, in this case the line
number of the Verilog statement that invoked the dpic_line function:

int dpic_line() {

// Get a scope: svScope scope = svGetScope();

const char* scopenamep = svGetNameFromScope(scope);

assert(scopenamep);

const char* filenamep = "";

int lineno = 0;

if (svGetCallerInfo(&filenamep, &lineno)) {

printf("dpic_line called from scope %s on line %d\n",

scopenamep, lineno);

return lineno;

} else {

37

Verilator 4.108 16 VERIFICATION PROCEDURAL INTERFACE (VPI)

return 0;

}

}

See the IEEE Standard for more information.

DPI Header Isolation

Verilator places the IEEE standard header �les such as svdpi.h into a separate include directory, vltstd
(VeriLaTor STandarD). When compiling most applications $VERILATOR_ROOT/include/vltstd would
be in the include path along with the normal $VERILATOR_ROOT/include. However, when compiling
Verilated models into other simulators which have their own svdpi.h and similar standard �les with di�erent
contents, the vltstd directory should not be included to prevent picking up incompatible de�nitions.

Public Functions

Instead of DPI exporting, there's also Verilator public functions, which are slightly faster, but less compatible.

16 VERIFICATION PROCEDURAL INTERFACE (VPI)

Verilator supports a very limited subset of the VPI. This subset allows inspection, examination, value change
callbacks, and depositing of values to public signals only.

VPI is enabled with the verilator --vpi switch.

To access signals via the VPI, Verilator must be told exactly which signals are to be accessed. This is done
using the Verilator public pragmas documented below.

Verilator has an important di�erence from an event based simulator; signal values that are changed by the
VPI will not immediately propagate their values, instead the top level header �le's eval() method must be
called. Normally this would be part of the normal evaluation (i.e. the next clock edge), not as part of
the value change. This makes the performance of VPI routines extremely fast compared to event based
simulators, but can confuse some test-benches that expect immediate propagation.

Note the VPI by its speci�ed implementation will always be much slower than accessing the Verilator values
by direct reference (structure->module->signame), as the VPI accessors perform lookup in functions at
simulation runtime requiring at best hundreds of instructions, while the direct references are evaluated by
the compiler and result in only a couple of instructions.

For signal callbacks to work the main loop of the program must call VerilatedVpi::callValueCbs().

VPI Example

In the below example, we have readme marked read-only, and writeme which if written from outside the
model will have the same semantics as if it changed on the speci�ed clock edge.

38

Verilator 4.108 17 CROSS COMPILATION

cat >our.v <<'EOF'

module our (input clk);

reg readme /*verilator public_flat_rd*/;

reg writeme /*verilator public_flat_rw @(posedge clk) */;

initial $finish;

endmodule

EOF

There are many online tutorials and books on the VPI, but an example that accesses the above signal
"readme" would be:

cat >sim_main.cpp <<'<<EOF'

#include "Vour.h"

#include "verilated.h"

#include "verilated_vpi.h" // Required to get definitions

vluint64_t main_time = 0; // See comments in first example

double sc_time_stamp() { return main_time; }

void read_and_check() {

vpiHandle vh1 = vpi_handle_by_name((PLI_BYTE8*)"TOP.our.readme", NULL);

if (!vh1) { vl_fatal(__FILE__, __LINE__, "sim_main", "No handle found"); }

const char* name = vpi_get_str(vpiName, vh1);

printf("Module name: %s\n", name); // Prints "readme"

s_vpi_value v;

v.format = vpiIntVal;

vpi_get_value(vh1, &v);

printf("Value of v: %d\n", v.value.integer); // Prints "readme"

}

int main(int argc, char** argv, char** env) {

Verilated::commandArgs(argc, argv);

Vour* top = new Vour;

Verilated::internalsDump(); // See scopes to help debug

while (!Verilated::gotFinish()) {

top->eval();

VerilatedVpi::callValueCbs(); // For signal callbacks

read_and_check();

}

delete top;

exit(0);

}

EOF

17 CROSS COMPILATION

Verilator supports cross-compiling Verilated code. This is generally used to run Verilator on a Linux system
and produce C++ code that is then compiled on Windows.

39

Verilator 4.108 17 CROSS COMPILATION

Cross compilation involves up to three di�erent OSes. The build system is where you con�gured and compiled
Verilator, the host system where you run Verilator, and the target system where you compile the Verilated
code and run the simulation.

Currently, Verilator requires the build and host system type to be the same, though the target system type
may be di�erent. To support this, ./con�gure and make Verilator on the build system. Then, run Verilator
on the host system. Finally, the output of Verilator may be compiled on the di�erent target system.

To support this, none of the �les that Verilator produces will reference any con�gure generated build-system
speci�c �les, such as con�g.h (which is renamed in Verilator to con�g_build.h to reduce confusion.) The
disadvantage of this approach is that include/verilatedos.h must self-detect the requirements of the target
system, rather than using con�gure.

The target system may also require edits to the Make�les, the simple Make�les produced by Verilator presume
the target system is the same type as the build system.

CMake

Verilator can be run using CMake, which takes care of both running Verilator and compiling the output.
There is a CMake example in the examples/ directory. The following is a minimal CMakeLists.txt that
would build the code listed in "EXAMPLE C++ EXECUTION":

project(cmake_example)

find_package(verilator HINTS $ENV{VERILATOR_ROOT})

add_executable(Vour sim_main.cpp)

verilate(Vour SOURCES our.v)

�nd_package will automatically �nd an installed copy of Verilator, or use a local build if VERILATOR_ROOT
is set.

It is recommended to use CMake >= 3.12 and the Ninja generator, though other combinations should work.
To build with CMake, change to the folder containing CMakeLists.txt and run:

mkdir build

cd build

cmake -GNinja ..

ninja

Or to build with your system default generator:

mkdir build

cd build

cmake ..

cmake --build .

If you're building the example you should have an executable to run:

./Vour

40

Verilator 4.108 17 CROSS COMPILATION

The package sets the CMake variables verilator_FOUND, VERILATOR_ROOT and VERILATOR_BIN
to the appropriate values, and also creates a verilate() function. verilate() will automatically create custom
commands to run Verilator and add the generated C++ sources to the target speci�ed.

verilate(target SOURCES source ... [TOP_MODULE top] [PREFIX name]

[TRACE] [TRACE_FST] [SYSTEMC] [COVERAGE]

[INCLUDE_DIRS dir ...] [OPT_SLOW ...] [OPT_FAST ...]

[OPT_GLOBAL ..] [DIRECTORY dir] [VERILATOR_ARGS ...])

Lowercase and ... should be replaced with arguments, the uppercase parts delimit the arguments and can
be passed in any order, or left out entirely if optional.

verilate(target ...) can be called multiple times to add other verilog modules to an executable or library
target.

When generating Verilated SystemC sources, you should also include the SystemC include directories and
link to the SystemC libraries.

Verilator's CMake support provides a convenience function to automatically �nd and link to the SystemC
library. It can be used as:

verilator_link_systemc(target)

where target is the name of your target.

The search paths can be con�gured by setting some variables:

- The variables SYSTEMC_INCLUDE and SYSTEMC_LIBDIR to give a direct path to the SystemC
include an library path.

- SYSTEMC_ROOT to set the installation pre�x of an installed SystemC library.

- SYSTEMC to set the installation pre�x of an installed SystemC library (same as above).

- When using Accellera's SystemC with CMake support, a CMake target is available that simpli�es the above
steps. This will only work if the SystemC installation can be found by CMake. This can be con�gured by
setting the CMAKE_PREFIX_PATH variable during CMake con�guration.

Don't forget to set the same C++ standard for the Verilated sources as the SystemC library. This can be
speci�ed using the SYSTEMC_CXX_FLAGS environment variable.

target

Name of a target created by add_executable or add_library.

SOURCES

List of Verilog �les to Verilate. Must have at least one �le.

PREFIX

Optional. Sets the Verilator output pre�x. Defaults to the name of the �rst source �le with a "V"
prepended. Must be unique in each call to verilate(), so this is necessary if you build a module multiple
times with di�erent parameters. Must be a valid C++ identi�er, i.e. contains no white space and only
characters A-Z, a-z, 0-9 or _.

41

Verilator 4.108 18 HIERARCHICAL VERILATION

TOP_MODULE

Optional. Sets the name of the top module. Defaults to the name of the �rst �le in the SOURCES
array.

TRACE

Optional. Enables VCD tracing if present, equivalent to "VERILATOR_ARGS --trace".

TRACE_FST

Optional. Enables FST tracing if present, equivalent to "VERILATOR_ARGS --trace-fst".

SYSTEMC

Optional. Enables SystemC mode, defaults to C++ if not speci�ed.

COVERAGE

Optional. Enables coverage if present, equivalent to "VERILATOR_ARGS --coverage"

INCLUDE_DIRS

Optional. Sets directories that Verilator searches (same as -y).

OPT_SLOW

Optional. Set compiler �ags for the slow path. You may want to reduce the optimization level to
improve compile times with large designs.

OPT_FAST

Optional. Set compiler �ags for the fast path.

OPT_GLOBAL

Optional. Set compiler �ags for the common runtime library used by Verilated models.

DIRECTORY

Optional. Set the verilator output directory. It is preferable to use the default, which will avoid
collisions with other �les.

VERILATOR_ARGS

Optional. Extra arguments to Verilator. Do not specify --Mdir or --pre�x here, use DIRECTORY or
PREFIX.

18 HIERARCHICAL VERILATION

Large designs may take long (e.g. 10+ minutes) and huge memory (e.g. 100+GB) to Verilate. One
workaround is hierarchical Verilation, it is to Verilate each moderate size of building blocks and �nally
combine the building blocks. The building block will be called "hierarchy block" later.

The current hierarchical Verilation is based on protect-lib. Each hierarchy block is Verilated to protect-lib.
User modules of the hierarchy blocks will see a tiny wrapper generated by protect-lib instead of the actual
design.

42

Verilator 4.108 18 HIERARCHICAL VERILATION

Usage

All user need to do is mark moderate size of module as hierarchy block and pass --hierarchical option to
verilator command. There are two ways to mark a module:

a) Write /* verilator hier_block */ metacomment in HDL code

See L</"LANGUAGE EXTENSIONS"> for more detail.

b) add hier_block line in the configuration file.

See C<hier_block> in L</"CONFIGURATION FILES"> for example.

You don't have to take care of hierarchical blocks when compiling Verilated C++ code. You can compile as
usual. make -C obj_dir -f Vtop_module_name.mk

See also "Overlapping Verilation and compilation" to get executable quickly.

Limitations

Because hierarchy blocks are Verilated to protect-lib, they have some limitations such as:

The block cannot be accessed using dot (.) from upper module.

Signals in the block cannot be traced.

Modport cannot be used at the hirarchical block boundary.

On the other hand, the following usage is supported.

- Nested hierarchy block. A hierarchy block may instantiate other

hierarchy blocks.

- Parameterized hierarchy block. Parameters of a hierarchy block can be

overridden using #(.param_name(value)) construct.

The simulation speed may not be as fast as �at Verilation, in which all modules are globally scheduled.

Overlapping Verilation and compilation

Verilator needs to run N + 2 times in hierarchical Verilation, where N is the number of hierarchy blocks. 1
of 2 is for the top module which refers wrappers of all other hierarchy blocks. The other 1 of 2 is the initial
run that searches modules marked with /*verilator hier_block*/ metacomment and creates a plan and write
in (pre�x)_hier.mk. This initial run internally invokes other N + 1 runs, so you don't have to care about
these N + 1 times of run.

If -j <jobs> option is speci�ed, Verilation for hierarchy blocks runs in parallel.

If --build option is also speci�ed, C++ compilation also runs as soon as a hierarchy block is Verilated. C++
compilation and Verilation for other hierarchy blocks run simultaneously.

43

Verilator 4.108 19 MULTITHREADING

19 MULTITHREADING

Verilator supports multithreaded simulation models.

With --no-threads, the default, the model is not thread safe, and any use of more than one thread calling
into one or even di�erent Verilated models may result in unpredictable behavior. This gives the highest
single thread performance.

With --threads 1, the generated model is single threaded, however the support libraries are multithread
safe. This allows di�erent instantiations of model(s) to potentially each be run under a di�erent thread. All
threading is the responsibility of the user's C++ testbench.

With --threads N, where N is at least 2, the generated model will be designed to run in parallel on N threads.
The thread calling eval() provides one of those threads, and the generated model will create and manage the
other N-1 threads. It's the client's responsibility not to oversubscribe the available CPU cores. Under CPU
oversubscription, the Verilated model should not livelock nor deadlock, however, you can expect performance
to be far worse than it would be with proper ratio of threads and CPU cores.

The remainder of this section describe behavior with --threads 1 or --threads N (not --no-threads).

VL_THREADED is de�ned when compiling a threaded Verilated module, causing the Verilated support
classes become threadsafe.

The thread used for constructing a model must be the same thread that calls eval() into the model, this is
called the "eval thread". The thread used to perform certain global operations such as saving and tracing
must be done by a "main thread". In most cases the eval thread and main thread are the same thread (i.e.
the user's top C++ testbench runs on a single thread), but this is not required.

The --trace-threads options can be used to produce trace dumps using multiple threads. If --trace-threads
is set without --threads, then --trace-threads will imply --threads 1, i.e.: the support libraries will be thread
safe.

With --trace-threads 0, trace dumps are produced on the main thread. This again gives the highest single
thread performance.

With --trace-threads N, where N is at least 1, N additional threads will be created and managed by the trace
�les (e.g.: VerilatedVcdC or VerilatedFstC), to generate the trace dump. The main thread will be released to
proceed with execution as soon as possible, though some blocking of the main thread is still necessary while
capturing the trace. Di�erent trace formats can utilize a various number of threads. See the --trace-threads
option.

When running a multithreaded model, the default Linux task scheduler often works against the model, by
assuming threads are short lived, and thus often schedules threads using multiple hyperthreads within the
same physical core. For best performance use the numactl program to (when the threading count �ts) select
unique physical cores on the same socket. The same applies for --trace-threads as well.

As an example, if a model was Verilated with "--threads 4", we consult

egrep 'processor|physical id|core id' /proc/cpuinfo

To select cores 0, 1, 2, and 3 that are all located on the same socket (0) but di�erent physical cores. (Also
useful is "numactl --hardware", or lscpu but those doesn't show Hyperthreading cores.) Then we execute

44

Verilator 4.108 20 CONFIGURATION FILES

numactl -m 0 -C 0,1,2,3 -- verilated_executable_name

This will limit memory to socket 0, and threads to cores 0, 1, 2, 3, (presumably on socket 0) optimizing
performance. Of course this must be adjusted if you want another simulator using e.g. socket 1, or if you
Verilated with a di�erent number of threads. To see what CPUs are actually used, use --prof-threads.

Multithreaded Verilog and Library Support

$display/$stop/$�nish are delayed until the end of an eval() call in order to maintain ordering between
threads. This may result in additional tasks completing after the $stop or $�nish.

If using --coverage, the coverage routines are fully thread safe.

If using --dpi, Verilator assumes pure DPI imports are thread safe, balancing performance versus safety. See
--threads-dpi.

If using --savable, the save/restore classes are not multithreaded and must be called only by the eval thread.

If using --sc, the SystemC kernel is not thread safe, therefore the eval thread and main thread must be the
same.

If using --trace, the tracing classes must be constructed and called from the main thread.

If using --vpi, since SystemVerilog VPI was not architected by IEEE to be multithreaded, Verilator requires
all VPI calls are only made from the main thread.

20 CONFIGURATION FILES

In addition to the command line, warnings and other features may be controlled by con�guration �les,
typically named with the .vlt extension. An example:

`verilator_config

lint_off -rule WIDTH

lint_off -rule CASEX -file "silly_vendor_code.v"

This disables WIDTH warnings globally, and CASEX for a speci�c �le.

Con�guration �les are fed through the normal Verilog preprocessor prior to parsing, so `ifdefs, `de�nes, and
comments may be used as if it were normal Verilog code.

Note that �le or line-speci�c con�guration only applies to �les read after the con�guration �le. It is therefore
recommended to pass the con�guration �le to Verilator as the �rst �le.

The grammar of con�guration commands is as follows:

`verilator_con�g

Take remaining text and treat it as Verilator con�guration commands.

45

Verilator 4.108 20 CONFIGURATION FILES

coverage_on [-�le "<�lename>" [-lines <line> [- <line>]]]

coverage_o� [-�le "<�lename>" [-lines <line> [- <line>]]]

Enable/disable coverage for the speci�ed �lename (or wildcard with '*' or '?', or all �les if omitted)
and range of line numbers (or all lines if omitted). Often used to ignore an entire module for coverage
analysis purposes.

lint_on [-rule <message>] [-�le "<�lename>" [-lines <line> [- <line>]]]

lint_o� [-rule <message>] [-�le "<�lename>" [-lines <line> [- <line>]]]

lint_o� [-rule <message>] [-�le "<�lename>"] [-match "<string>"]

Enable/disables the speci�ed lint warning, in the speci�ed �lename (or wildcard with '*' or '?', or all
�les if omitted) and range of line numbers (or all lines if omitted).

With lint_o� using '*' will override any lint_on directives in the source, i.e. the warning will still not
be printed.

If the -rule is omitted, all lint warnings (see list in -Wno-lint) are enabled/disabled. This will override
all later lint warning enables for the speci�ed region.

If -match is set the linter warnings are matched against this (wildcard) string and are waived in case
they match and i� rule and �le (with wildcard) also match.

In previous versions -rule was named -msg. The latter is deprecated, but still works with a deprecation
info, it may be removed in future versions.

tracing_on [-�le "<�lename>" [-lines <line> [- <line>]]]

tracing_o� [-�le "<�lename>" [-lines <line> [- <line>]]]

Enable/disable waveform tracing for all future signals declared in the speci�ed �lename (or wildcard
with '*' or '?', or all �les if omitted) and range of line numbers (or all lines if omitted).

For tracing_o�, instances below any module in the �les/ranges speci�ed will also not be traced.

clock_enable -module "<modulename>" -var "<signame>"

Indicate the signal is used to gate a clock, and the user takes responsibility for insuring there are no
races related to it.

Same as /*verilator clock_enable*/, see �22 for more information and an example.

clocker -module "<modulename>" [-task "<taskname>"] -var "<signame>"

clocker -module "<modulename>" [-function "<funcname>"] -var "<signame>"

no_clocker -module "<modulename>" [-task "<taskname>"] -var "<signame>"

no_clocker -module "<modulename>" [-function "<funcname>"] -var "<signame>"

Indicate the signal is used as clock or not. This information is used by Verilator to mark the signal
as clocker and propagate the clocker attribute automatically to derived signals. See --clk for more
information.

Same as /*verilator clocker*/, see �22 for more information.

coverage_block_o� -module "<modulename>" -block "<blockname>"

coverage_block_o� -�le "<�lename>" -line <lineno>

Speci�es the entire begin/end block should be ignored for coverage analysis purposes. Can either be
speci�ed as a named block or as a �lename and line number.

Same as /*verilator coverage_block_o�*/, see �22 for more information.

46

Verilator 4.108 20 CONFIGURATION FILES

full_case -�le "<�lename>" -lines <lineno>

parallel_case -�le "<�lename>" -lines <lineno>

Same as "//synopsys full_case" and "//synopsys parallel_case". When these synthesis directives are
discovered, Verilator will either formally prove the directive to be true, or failing that, will insert the
appropriate code to detect failing cases at simulation runtime and print an "Assertion failed" error
message.

hier_block -module "<modulename>"

Speci�es that the module is a unit of hierarchical Verilation. Note that the setting is ignored unless
--hierachical option is speci�ed. See �18 for more information.

inline -module "<modulename>"

Speci�es the module may be inlined into any modules that use this module. Same as /*verilator
inline_module*/, and see that under �22 for more information.

isolate_assignments -module "<modulename>" [-task "<taskname>"] -var "<signame>"

isolate_assignments -module "<modulename>" [-function "<funcname>"] -var "<signame>"

isolate_assignments -module "<modulename>" -function "<fname>"

Used to indicate the assignments to this signal in any blocks should be isolated into new blocks. When
there is a large combinatorial block that is resulting in a UNOPTFLAT warning, attaching this to the
signal causing a false loop may clear up the problem.

Same as /* verilator isolate_assignments */, see �22 for more information.

no_inline -module "<modulename>"

Speci�es the module should not be inlined into any modules that use this module. Same as /*verilator
no_inline_module*/, and see that under �22 for more information.

no_inline [-module "<modulename>"] -task "<taskname>"

no_inline [-module "<modulename>"] -function "<funcname>"

Specify the function or task should not be inlined into where it is used. This may reduce the size of
the �nal executable when a task is used a very large number of times. For this �ag to work, the task
and tasks below it must be pure; they cannot reference any variables outside the task itself.

Same as /*verilator no_inline_task*/, see �22 for more information.

public [-module "<modulename>"] [-task/-function "<taskname>"] -var "<signame>"

public_�at [-module "<modulename>"] [-task/-function "<taskname>"] -var "<signame>"

public_�at_rd [-module "<modulename>"] [-task/-function "<taskname>"] -var "<signame>"

public_�at_rw [-module "<modulename>"] [-task/-function "<taskname>"] -var "<signame>"
"@(edge)"

Sets the variable to be public. Same as /*verilator public*/ or /*verilator public_�at*/ etc, see those
under �22 for more information.

sc_bv -module "<modulename>" [-task "<taskname>"] -var "<signame>"

sc_bv -module "<modulename>" [-function "<funcname>"] -var "<signame>"

Sets the port to be of sc_bv<width> type, instead of bool, vluint32_t or vluint64_t. Same as
/*verilator sc_bv*/, see that under �22 for more information.

sformat [-module "<modulename>"] [-task "<taskname>"] -var "<signame>"

47

Verilator 4.108 21 LANGUAGE STANDARD SUPPORT

sformat [-module "<modulename>"] [-function "<funcname>"] -var "<signame>"

Must be applied to the �nal argument of type "input string" of a function or task to indicate the
function or task should pass all remaining arguments through $sformatf. This allows creation of DPI
functions with $display like behavior. See the test_regress/t/t_dpi_display.v �le for an example.

Same as /*verilator sformat*/, see �22 for more information.

split_var [-module "<modulename>"] [-task "<taskname>"] -var "<varname>"

split_var [-module "<modulename>"] [-function "<funcname>"] -var "<varname>"

Break the variable into multiple pieces typically to resolve UNOPTFLAT performance issues. Typically
the variables to attach this to are recommended by Verilator itself, see UNOPTFLAT.

Same as /*verilator split_var*/, see �22 for more information.

21 LANGUAGE STANDARD SUPPORT

Verilog 2001 (IEEE 1364-2001) Support

Verilator supports most Verilog 2001 language features. This includes signed numbers, "always @*", generate
statements, multidimensional arrays, localparam, and C-style declarations inside port lists.

Verilog 2005 (IEEE 1364-2005) Support

Verilator supports most Verilog 2005 language features. This includes the `begin_keywords and `end_keywords
compiler directives, $clog2, and the uwire keyword.

SystemVerilog 2005 (IEEE 1800-2005) Support

Verilator supports ==? and !=? operators, ++ and -- in some contexts, $bits, $countbits, $countones, $error,
$fatal, $info, $isunknown, $onehot, $onehot0, $unit, $warning, always_comb, always_�, always_latch, bit,
byte, chandle, const, do-while, enum, export, �nal, import, int, interface, logic, longint, modport, package,
program, shortint, struct, time, typedef, union, var, void, priority case/if, and unique case/if.

It also supports .name and .* interconnection.

Verilator partially supports concurrent assert and cover statements; see the enclosed coverage tests for the
syntax which is allowed.

SystemVerilog 2012 (IEEE 1800-2012) Support

Verilator implements a full SystemVerilog 2012 preprocessor, including function call-like preprocessor de�nes,
default de�ne arguments, `__FILE__, `__LINE__ and `unde�neall.

Verilator currently has some support for SystemVerilog synthesis constructs. As SystemVerilog features enter
common usage they are added; please �le a bug if a feature you need is missing.

48

Verilator 4.108 22 LANGUAGE EXTENSIONS

SystemVerilog 2017 (IEEE 1800-2017) Support

Verilator supports the 2017 "for" loop constructs, and several minor cleanups made in 1800-2017.

Verilog AMS Support

Verilator implements a very small subset of Verilog AMS (Verilog Analog and Mixed-Signal Extensions) with
the subset corresponding to those VMS keywords with near equivalents in the Verilog 2005 or SystemVerilog
2009 languages.

AMS parsing is enabled with "--language VAMS" or "--language 1800+VAMS".

At present Verilator implements ceil, exp, �oor, ln, log, pow, sqrt, string, and wreal.

Synthesis Directive Assertion Support

With the --assert switch, Verilator reads any "//synopsys full_case" or "//synopsys parallel_case" directives.
The same applies to any "//ambit synthesis", "//cadence" or "//pragma" directives of the same form.

When these synthesis directives are discovered, Verilator will either formally prove the directive to be true,
or failing that, will insert the appropriate code to detect failing cases at simulation runtime and print an
"Assertion failed" error message.

Verilator likewise also asserts any "unique" or "priority" SystemVerilog keywords on case statement, as well
as "unique" on if statements. However, "priority if" is currently simply ignored.

22 LANGUAGE EXTENSIONS

The following additional constructs are the extensions Verilator supports on top of standard Verilog code.
Using these features outside of comments or `ifdef's may break other tools.

`__FILE__

The __FILE__ de�ne expands to the current �lename as a string, like C++'s __FILE__. This
was incorporated into to the 1800-2009 standard (but supported by Verilator since 2006!)

`__LINE__

The __LINE__ de�ne expands to the current �lename as a string, like C++'s __LINE__. This
was incorporated into to the 1800-2009 standard (but supported by Verilator since 2006!)

`error string

This will report an error when encountered, like C++'s #error.

$c(string, ...);

The string will be embedded directly in the output C++ code at the point where the surrounding
Verilog code is compiled. It may either be a standalone statement (with a trailing ; in the string), or

49

Verilator 4.108 22 LANGUAGE EXTENSIONS

a function that returns up to a 32-bit number (without a trailing ;). This can be used to call C++
functions from your Verilog code.

String arguments will be put directly into the output C++ code. Expression arguments will have the
code to evaluate the expression inserted. Thus to call a C++ function, $c("func(",a,")") will result in
'func(a)' in the output C++ code. For input arguments, rather than hard-coding variable names in
the string $c("func(a)"), instead pass the variable as an expression $c("func(",a,")"). This will allow
the call to work inside Verilog functions where the variable is �attened out, and also enable other
optimizations.

If you will be reading or writing any Verilog variables inside the C++ functions, the Verilog signals
must be declared with /*verilator public*/.

You may also append an arbitrary number to $c, generally the width of the output. [signal_32_bits
= $c32("...");] This allows for compatibility with other simulators which require a di�erently named
PLI function name for each di�erent output width.

$display, $write, $fdisplay, $fwrite, $sformat, $swrite

Format arguments may use C fprintf sizes after the % escape. Per the Verilog standard, %x prints a
number with the natural width, and %0x prints a number with minimum width. Verilator extends this
so %5x prints 5 digits per the C standard (this is unspeci�ed in Verilog, but was incorporated into the
1800-2009).

`coverage_block_o�

Speci�es the entire begin/end block should be ignored for coverage analysis. Must be inside a code
block, e.g. within a begin/end pair. Same as /* verilator coverage_block_o� */ and coverage_block_off
in �20.

`systemc_header

Take remaining text up to the next `verilog or `systemc_... mode switch and place it verbatim into
the output .h �le's header. Must be placed as a module item, e.g. directly inside a module/endmodule
pair. Despite the name of this macro, this also works in pure C++ code.

`systemc_ctor

Take remaining text up to the next `verilog or `systemc_... mode switch and place it verbatim into the
C++ class constructor. Must be placed as a module item, e.g. directly inside a module/endmodule
pair. Despite the name of this macro, this also works in pure C++ code.

`systemc_dtor

Take remaining text up to the next `verilog or `systemc_... mode switch and place it verbatim into
the C++ class destructor. Must be placed as a module item, e.g. directly inside a module/endmodule
pair. Despite the name of this macro, this also works in pure C++ code.

`systemc_interface

Take remaining text up to the next `verilog or `systemc_... mode switch and place it verbatim into
the C++ class interface. Must be placed as a module item, e.g. directly inside a module/endmodule
pair. Despite the name of this macro, this also works in pure C++ code.

`systemc_imp_header

Take remaining text up to the next `verilog or `systemc_... mode switch and place it verbatim into the
header of all �les for this C++ class implementation. Must be placed as a module item, e.g. directly
inside a module/endmodule pair. Despite the name of this macro, this also works in pure C++ code.

`systemc_implementation

Take remaining text up to the next `verilog or `systemc_... mode switch and place it verbatim into a
single �le of the C++ class implementation. Must be placed as a module item, e.g. directly inside a
module/endmodule pair. Despite the name of this macro, this also works in pure C++ code.

50

Verilator 4.108 22 LANGUAGE EXTENSIONS

If you will be reading or writing any Verilog variables in the C++ functions, the Verilog signals must
be declared with /*verilator public*/. See also the public task feature; writing an accessor may result
in cleaner code.

`SYSTEMVERILOG

The SYSTEMVERILOG, SV_COV_START and related standard de�nes are set by default when
--language is 1800-*.

`VERILATOR

`verilator

`verilator3

The VERILATOR, verilator and verilator3 de�nes are set by default so you may `ifdef around tool
speci�c constructs.

`verilator_con�g

Take remaining text up to the next `verilog mode switch and treat it as Verilator con�guration com-
mands.

`verilog

Switch back to processing Verilog code after a `systemc_... mode switch. The Verilog code returns to
the last language mode speci�ed with `begin_keywords, or SystemVerilog if none was speci�ed.

/*verilator clock_enable*/

Used after a signal declaration to indicate the signal is used to gate a clock, and the user takes
responsibility for insuring there are no races related to it. (Typically by adding a latch, and running
static timing analysis.) For example:

reg enable_r /*verilator clock_enable*/;

wire gated_clk = clk & enable_r;

always_ff @ (posedge clk)

enable_r <= enable_early;

The clock_enable attribute will cause the clock gate to be ignored in the scheduling algorithm, some-
times required for correct clock behavior, and always improving performance. It's also a good idea to
enable the IMPERFECTSCH warning, to ensure all clock enables are properly recognized.

Same as clock_enable in con�guration �les, see �20 for more information.

/*verilator clocker*/

/*verilator no_clocker*/

Used after a signal declaration to indicate the signal is used as clock or not. This information is used
by Verilator to mark the signal as clocker and propagate the clocker attribute automatically to derived
signals. See --clk for more information.

Same as clocker and no_clocker in con�guration �les, see �20 for more information.

/*verilator coverage_block_o�*/

Speci�es the entire begin/end block should be ignored for coverage analysis purposes.

Same as coverage_block_off in con�guration �les, see �20 for more information.

/*verilator coverage_o�*/

Speci�es that following lines of code should have coverage disabled. Often used to ignore an entire
module for coverage analysis purposes.

51

Verilator 4.108 22 LANGUAGE EXTENSIONS

/*verilator coverage_on*/

Speci�es that following lines of code should have coverage re-enabled (if appropriate --coverage �ags
are passed) after being disabled earlier with /*verilator coverage_o�*/.

/*verilator hier_block*/

Speci�es that the module is a unit of hierarchical Verilation. This metacomment must be between
"module module_name(...);" and "endmodule". The module will not be inlined nor uniqui�ed for
each instance in hierarchical Verilation. Note that the metacomment is ignored unless --hierachical
option is speci�ed.

See �18 for more information.

/*verilator inline_module*/

Speci�es the module the comment appears in may be inlined into any modules that use this module.
This is useful to speed up simulation runtime. Note if using "--public" that signals under inlined
submodules will be named submodule__DOT__subsignal as C++ does not allow "." in signal names.

Same as inline in con�guration �les, see �20 for more information.

/*verilator isolate_assignments*/

Used after a signal declaration to indicate the assignments to this signal in any blocks should be isolated
into new blocks. When there is a large combinatorial block that is resulting in a UNOPTFLAT warning,
attaching this to the signal causing a false loop may clear up the problem.

IE, with the following

reg splitme /* verilator isolate_assignments*/;

// Note the placement of the semicolon above

always @* begin

if (....) begin

splitme =;

other assignments

end

end

Verilator will internally split the block that assigns to "splitme" into two blocks:

It would then internally break it into (sort of):

// All assignments excluding those to splitme

always @* begin

if (....) begin

other assignments

end

end

// All assignments to splitme

always @* begin

if (....) begin

splitme =;

end

end

Same as isolate_assignments in con�guration �les, see �20 for more information.

/*verilator lint_o� msg*/

Disable the speci�ed warning message for any warnings following the comment.

52

Verilator 4.108 22 LANGUAGE EXTENSIONS

/*verilator lint_on msg*/

Re-enable the speci�ed warning message for any warnings following the comment.

/*verilator lint_restore*/

After a /*verilator lint_save*/, pop the stack containing lint message state. Often this is useful at the
bottom of include �les.

/*verilator lint_save*/

Push the current state of what lint messages are turned on or turned o� to a stack. Later meta-
comments may then lint_on or lint_o� speci�c messages, then return to the earlier message state by
using /*verilator lint_restore*/. For example:

// verilator lint_save

// verilator lint_off SOME_WARNING

... // code needing SOME_WARNING turned off

// verilator lint_restore

If SOME_WARNING was on before the lint_o�, it will now be restored to on, and if it was o� before
the lint_o� it will remain o�.

/*verilator no_inline_module*/

Speci�es the module the comment appears in should not be inlined into any modules that use this
module.

Same as no_inline in con�guration �les, see �20 for more information.

/*verilator no_inline_task*/

Used in a function or task variable de�nition section to specify the function or task should not be
inlined into where it is used. This may reduce the size of the �nal executable when a task is used
a very large number of times. For this �ag to work, the task and tasks below it must be pure; they
cannot reference any variables outside the task itself.

Same as no_inline in con�guration �les, see �20 for more information.

/*verilator public*/ (parameter)

Used after a parameter declaration to indicate the emitted C code should have the parameter values
visible. Due to C++ language restrictions, this may only be used on 64-bit or narrower integral
enumerations.

parameter [2:0] PARAM /*verilator public*/ = 2'b0;

/*verilator public*/ (typedef enum)

Used after an enum typedef declaration to indicate the emitted C code should have the enum values
visible. Due to C++ language restrictions, this may only be used on 64-bit or narrower integral
enumerations.

typedef enum logic [2:0] { ZERO = 3'b0 } pub_t /*verilator public*/;

/*verilator public*/ (variable)

Used after an input, output, register, or wire declaration to indicate the signal should be declared
so that C code may read or write the value of the signal. This will also declare this module public,
otherwise use /*verilator public_�at*/.

Instead of using public variables, consider instead making a DPI or public function that accesses the
variable. This is nicer as it provides an obvious entry point that is also compatible across simulators.

Same as public in con�guration �les, see �20 for more information.

53

Verilator 4.108 22 LANGUAGE EXTENSIONS

/*verilator public*/ (task/function)

Used inside the declaration section of a function or task declaration to indicate the function or task
should be made into a C++ function, public to outside callers. Public tasks will be declared as a void
C++ function, public functions will get the appropriate non-void (bool, uint32_t, etc) return type.
Any input arguments will become C++ arguments to the function. Any output arguments will become
C++ reference arguments. Any local registers/integers will become function automatic variables on
the stack.

Wide variables over 64 bits cannot be function returns, to avoid exposing complexities. However, wide
variables can be input/outputs; they will be passed as references to an array of 32-bit numbers.

Generally, only the values of stored state (�ops) should be written, as the model will NOT notice
changes made to variables in these functions. (Same as when a signal is declared public.)

You may want to use DPI exports instead, as it's compatible with other simulators.

Same as public in con�guration �les, see �20 for more information.

/*verilator public_�at*/ (variable)

Used after an input, output, register, or wire declaration to indicate the signal should be declared so
that C code may read or write the value of the signal. This will not declare this module public, which
means the name of the signal or path to it may change based upon the module inlining which takes
place.

Same as public_flat in con�guration �les, see �20 for more information.

/*verilator public_�at_rd*/ (variable)

Used after an input, output, register, or wire declaration to indicate the signal should be declared
public_�at (see above), but read-only.

Same as public_flat_rd in con�guration �les, see �20 for more information.

/*verilator public_�at_rw @(<edge_list>) */ (variable)

Used after an input, output, register, or wire declaration to indicate the signal should be declared
public_�at_rd (see above), and also writable, where writes should be considered to have the timing
speci�ed by the given sensitivity edge list. Set for all variables, ports and wires using the --public-�at-rw
switch.

Same as public_flat_rw in con�guration �les, see �20 for more information.

/*verilator public_module*/

Used after a module statement to indicate the module should not be inlined (unless speci�cally re-
quested) so that C code may access the module. Verilator automatically sets this attribute when the
module contains any public signals or `systemc_ directives. Also set for all modules when using the
--public switch.

Same as public in con�guration �les, see �20 for more information.

/*verilator sc_clock*/

Deprecated and ignored. Previously used after an input declaration to indicate the signal should be
declared in SystemC as a sc_clock instead of a bool. This was needed in SystemC 1.1 and 1.2 only;
versions 2.0 and later do not require clock pins to be sc_clocks and this is no longer needed and is
ignored.

/*verilator sc_bv*/

Used after a port declaration. It sets the port to be of sc_bv<width> type, instead of bool, vluint32_t
or vluint64_t. This may be useful if the port width is parameterized and the instantiating C++ code
wants to always have a sc_bv so it can accept any width. In general you should avoid using this
attribute when not necessary as with increasing usage of sc_bv the performance decreases signi�cantly.

Same as sc_bv in con�guration �les, see �20 for more information.

54

Verilator 4.108 23 LANGUAGE LIMITATIONS

/*verilator sformat*/

Attached to the �nal argument of type "input string" of a function or task to indicate the function
or task should pass all remaining arguments through $sformatf. This allows creation of DPI functions
with $display like behavior. See the test_regress/t/t_dpi_display.v �le for an example.

Same as sformat in con�guration �les, see �20 for more information.

/*verilator split_var*/

Attached to a variable or a net declaration to break the variable into multiple pieces typically to
resolve UNOPTFLAT performance issues. Typically the variables to attach this to are recommended
by Verilator itself, see UNOPTFLAT below.

For example, Verilator will internally convert a variable with the metacomment such as:

logic [7:0] x [0:1] /*verilator split_var*/;

To:

logic [7:0] x__BRA__0__KET__ /*verilator split_var*/;

logic [7:0] x__BRA__1__KET__ /*verilator split_var*/;

Note that the generated packed variables retain the split_var metacomment because they may be split
into further smaller pieces according to the access patterns.

This only supports unpacked arrays, packed arrays, and packed structs of integer types (reg, logic,
bit, byte, int...); otherwise if a split was requested but cannot occur a SPLITVAR warning is issued.
Splitting large arrays may slow down the Verilation speed, so use this only on variables that require it.

Same as split_var in con�guration �les, see �20 for more information.

/*verilator tag <text...>*/

Attached after a variable or structure member to indicate opaque (to Verilator) text that should be
passed through to the XML output as a tag, for use by downstream applications.

/*verilator tracing_o�*/

Disable waveform tracing for all future signals that are declared in this module, or instances below this
module. Often this is placed just after a primitive's module statement, so that the entire module and
instances below it are not traced.

/*verilator tracing_on*/

Re-enable waveform tracing for all future signals or instances that are declared.

23 LANGUAGE LIMITATIONS

There are some limitations and lack of features relative to the major closed-source simulators, by intent.

Synthesis Subset

Verilator supports the Synthesis subset with other veri�cation constructs being added over time. Verilator
also simulates events as Synopsys's Design Compiler would; namely given a block of the form:

always @ (x) y = x & z;

55

Verilator 4.108 23 LANGUAGE LIMITATIONS

This will recompute y when there is even a potential for change in x or a change in z, that is when the �ops
computing x or z evaluate (which is what Design Compiler will synthesize.) A compliant simulator would
only calculate y if x changes. We recommend using always_comb to make the code run the same everywhere.
Also avoid putting $displays in combo blocks, as they may print multiple times when not desired, even on
compliant simulators as event ordering is not speci�ed.

Signal Naming

To avoid con�icts with C symbol naming, any character in a signal name that is not alphanumeric nor a
single underscore will be replaced by __0hh where hh is the hex code of the character. To avoid con�icts
with Verilator's internal symbols, any double underscore are replaced with ___05F (5F is the hex code of
an underscore.)

Bind

Verilator only supports "bind" to a target module name, not an instance path.

Class

Verilator class support is limited but in active development. Verilator supports members, and methods.
Verilator does not support class static members, class extend, or class parameters.

Dotted cross-hierarchy references

Verilator supports dotted references to variables, functions and tasks in di�erent modules. The portion
before the dot must have a constant value; for example a[2].b is acceptable, while a[x].b is generally not.

References into generated and arrayed instances use the instance names speci�ed in the Verilog stan-
dard; arrayed instances are named {instanceName}[{instanceNumber}] in Verilog, which becomes {instan-
ceName}__BRA__{instanceNumber}__KET__ inside the generated C++ code.

Latches

Verilator is optimized for edge sensitive (�op based) designs. It will attempt to do the correct thing for
latches, but most performance optimizations will be disabled around the latch.

Structures and Unions

Presently Verilator only supports packed structs and packed unions. Rand and randc tags on members are
simply ignored. All structures and unions are represented as a single vector, which means that generating
one member of a structure from blocking, and another from non-blocking assignments is unsupported.

56

Verilator 4.108 23 LANGUAGE LIMITATIONS

Time

All delays (#) are ignored, as they are in synthesis.

Unknown states

Verilator is mostly a two state simulator, not a four state simulator. However, it has two features which
uncover most initialization bugs (including many that a four state simulator will miss.)

Identity comparisons (=== or !==) are converted to standard ==/!= when neither side is a constant. This
may make the expression yield a di�erent result compared to a four state simulator. An === comparison
to X will always be false, so that Verilog code which checks for uninitialized logic will not �re.

Assigning X to a variable will actually assign a constant value as determined by the --x-assign switch. This
allows runtime randomization, thus if the value is actually used, the random value should cause downstream
errors. Integers also get randomized, even though the Verilog 2001 speci�cation says they initialize to zero.
Note however that randomization happens at initialization time and hence during a single simulation run,
the same constant (but random) value will be used every time the assignment is executed.

All variables, depending on --x-initial setting, are typically randomly initialized using a function. By running
several random simulation runs you can determine that reset is working correctly. On the �rst run, have
the function initialize variables to zero. On the second, have it initialize variables to one. On the third and
following runs have it initialize them randomly. If the results match, reset works. (Note this is what the
hardware will really do.) In practice, just setting all variables to one at startup �nds most problems (since
typically control signals are active-high).

--x-assign applies to variables explicitly initialized or assigned an X. Uninitialized clocks are initialized to
zero, while all other state holding variables are initialized to a random value. Event driven simulators will
generally trigger an edge on a transition from X to 1 (posedge) or X to 0 (negedge). However, by default,
since clocks are initialized to zero, Verilator will not trigger an initial negedge. Some code (particularly for
reset) may rely on X->0 triggering an edge. The --x-initial-edge switch enables this behavior. Comparing
runs with and without this switch will �nd such problems.

Tri/Inout

Verilator converts some simple tristate structures into two state. Pullup, pulldown, bu�f0, bu�f1, notif0,
notif1, pmos, nmos, tri0 and tri1 are also supported. Simple comparisons with === 1'bz are also supported.

An assignment of the form:

inout driver;

wire driver = (enable) ? output_value : 1'bz;

Will be converted to

input driver; // Value being driven in from "external" drivers

output driver__en; // True if driven from this module

output driver__out; // Value being driven from this module

57

Verilator 4.108 23 LANGUAGE LIMITATIONS

External logic will be needed to combine these signals with any external drivers.

Tristate drivers are not supported inside functions and tasks; an inout there will be considered a two state
variable that is read and written instead of a four state variable.

Functions & Tasks

All functions and tasks will be inlined (will not become functions in C.) The only support provided is for
simple statements in tasks (which may a�ect global variables).

Recursive functions and tasks are not supported. All inputs and outputs are automatic, as if they had the
Verilog 2001 "automatic" keyword prepended. (If you don't know what this means, Verilator will do what
you probably expect -- what C does. The default behavior of Verilog is di�erent.)

Generated Clocks

Verilator attempts to deal with generated and gated clocks correctly, however some cases cause problems
in the scheduling algorithm which is optimized for performance. The safest option is to have all clocks as
primary inputs to the model, or wires directly attached to primary inputs. For proper behavior clock enables
may also need the /*verilator clock_enable*/ attribute.

Gate Primitives

The 2-state gate primitives (and, buf, nand, nor, not, or, xnor, xor) are directly converted to behavioral
equivalents. The 3-state and MOS gate primitives are not supported. Tables are not supported.

Specify blocks

All specify blocks and timing checks are ignored. All min:typ:max delays use the typical value.

Array Initialization

When initializing a large array, you need to use non-delayed assignments. Verilator will tell you when this
needs to be �xed; see the BLKLOOPINIT error for more information.

Array Out of Bounds

Writing a memory element that is outside the bounds speci�ed for the array may cause a di�erent memory
element inside the array to be written instead. For power-of-2 sized arrays, Verilator will give a width
warning and the address. For non-power-of-2-sizes arrays, index 0 will be written.

Reading a memory element that is outside the bounds speci�ed for the array will give a width warning
and wrap around the power-of-2 size. For non-power-of-2 sizes, it will return a unspeci�ed constant of the

58

Verilator 4.108 23 LANGUAGE LIMITATIONS

appropriate width.

Assertions

Verilator is beginning to add support for assertions. Verilator currently only converts assertions to simple
"if (...) error" statements, and coverage statements to increment the line counters described in the coverage
section.

Verilator does not support SEREs yet. All assertion and coverage statements must be simple expressions
that complete in one cycle.

Encrypted Verilog

Open source simulators like Verilator are unable to use encrypted RTL (i.e. IEEE P1735). Talk to your IP
vendor about delivering IP blocks via Verilator's --protect-lib feature.

Language Keyword Limitations

This section describes speci�c limitations for each language keyword.

`__FILE__, `__LINE__, `begin_keywords, `begin_keywords, `begin_keywords, `begin_keywords,
`begin_keywords, `de�ne, `else, `elsif, `end_keywords, `endif, `error, `ifdef, `ifndef, `in-
clude, `line, `systemc_ctor, `systemc_dtor, `systemc_header, `systemc_imp_header, `sys-
temc_implementation, `systemc_interface, `undef, `verilog

Fully supported.

always, always_comb, always_�, always_latch, and, assign, begin, buf, byte, case, casex, casez,
default, defparam, do-while, else, end, endcase, endfunction, endgenerate, endmodule,
endspecify, endtask, �nal, for, function, generate, genvar, if, initial, inout, input, int,
integer, localparam, logic, longint, macromodule, module, nand, negedge, nor, not, or,
output, parameter, posedge, reg, scalared, shortint, signed, supply0, supply1, task, time,
tri, typedef, var, vectored, while, wire, xnor, xor

Generally supported.

++, -- operators

Increment/decrement can only be used as standalone statements or in certain limited cases.

'{} operator

Assignment patterns with order based, default, constant integer (array) or member identi�er (struct/union)
keys are supported. Data type keys and keys which are computed from a constant expression are not
supported.

`uselib

Uselib, a vendor speci�c library speci�cation method, is ignored along with anything following it until
the end of that line.

cast operator

Casting is supported only between simple scalar types, signed and unsigned, not arrays nor structs.

59

Verilator 4.108 23 LANGUAGE LIMITATIONS

chandle

Treated as a "longint"; does not yet warn about operations that are speci�ed as illegal on chandles.

disable

Disable statements may be used only if the block being disabled is a block the disable statement itself is
inside. This was commonly used to provide loop break and continue functionality before SystemVerilog
added the break and continue keywords.

inside

Inside expressions may not include unpacked array traversal or $ as an upper bound. Case inside and
case matches are also unsupported.

interface

Interfaces and modports, including with generated data types are supported. Generate blocks around
modports are not supported, nor are virtual interfaces nor unnamed interfaces.

shortreal

Short �oating point (shortreal) numbers are converted to real. Most other simulators either do not
support �oat, or convert likewise.

specify specparam

All specify blocks and timing checks are ignored.

uwire

Verilator does not perform warning checking on uwires, it treats the uwire keyword as if it were the
normal wire keyword.

$bits, $countbits, $countones, $error, $fatal, $�nish, $info, $isunknown, $onehot, $onehot0,
$readmemb, $readmemh, $signed, $stime, $stop, $time, $unsigned, $warning.

Generally supported.

$dump/$dumpports and related

$dump�le or $dumpports will create a VCD or FST �le (which is based on the --trace argument given
when the model was Verilated). This will take e�ect starting at the next eval() call. If you have
multiple Verilated designs under the same C model, then this will dump signals only from the design
containing the $dumpvars.

$dumpvars and $dumpports module identi�er is ignored; the traced instances will always start at the
top of the design. The levels argument is also ignored, use tracing_on/tracing_o� pragmas instead.

$dumpportson/$dumpportso�/$dumpportsall/$dumpportslimit �lename argument is ignored, only a
single trace �le may be active at once.

$dumpall/$dumpportsall, $dumpon/$dumpportson, $dumpo�/$dumpportso�, and $dumplimit/$dumpportlimit
are currently ignored.

$exit, $�nish, $stop

The rarely used optional parameter to $�nish and $stop is ignored. $exit is aliased to $�nish.

$fopen, $fclose, $fdisplay, $ferror, $feof, $�ush, $fgetc, $fgets, $fscanf, $fwrite, $fscanf, $ss-
canf

Generally supported.

$fullskew, $hold, $nochange, $period, $recovery, $recrem, $removal, $setup, $setuphold, $skew,
$timeskew, $width

All specify blocks and timing checks are ignored.

60

Verilator 4.108 24 ERRORS AND WARNINGS

$random, $urandom, $urandom_range

Use +verilator+seed argument to set the seed if there is no $random or $urandom optional argument
to set the seed. There is one random seed per C thread, not per module for $random, nor per object
for random stability of $urandom/$urandom_range.

$readmemb, $readmemh

Read memory commands should work properly. Note Verilator and the Verilog speci�cation does not
include support for readmem to multi-dimensional arrays.

$test$plusargs, $value$plusargs

Supported, but the instantiating C++/SystemC testbench must call

Verilated::commandArgs(argc, argv);

to register the command line before calling $test$plusargs or $value$plusargs.

24 ERRORS AND WARNINGS

Warnings may be disabled in three ways. First, when the warning is printed it will include a warning code.
Simply surround the o�ending line with a lint_o�/lint_on pair:

// verilator lint_off UNSIGNED

if (`DEF_THAT_IS_EQ_ZERO <= 3) $stop;

// verilator lint_on UNSIGNED

Second, warnings may be disabled using a con�guration �le with a lint_o� command. This is useful when
a script is suppressing warnings and the Verilog source should not be changed.

Warnings may also be globally disabled by invoking Verilator with the -Wno-warning switch. This should
be avoided, as it removes all checking across the designs, and prevents other users from compiling your code
without knowing the magic set of disables needed to successfully compile your design.

Error and Warning Format

Warnings and errors printed by Verilator always match this regular expression:

%(Error|Warning)(-[A-Z0-9_]+)?: ((\S+):(\d+):((\d+):)?)?.*

Errors and warning start with a percent sign (historical heritage from Digital Equipment Corporation). Some
errors or warning have a code attached, with meanings described below. Some errors also have a �lename,
line number and optional column number (starting at column 1 to match GCC).

Following the error message, Verilator will typically show the user's source code corresponding to the error,
pre�xed by the line number and a " | ". Following this is typically an arrow and � pointing at the error on
the source line directly above.

61

Verilator 4.108 24 ERRORS AND WARNINGS

List of all warnings

ALWCOMBORDER

Warns that an always_comb block has a variable which is set after it is used. This may cause
simulation-synthesis mismatches, as not all simulators allow this ordering.

always_comb begin

a = b;

b = 1;

end

Ignoring this warning will only suppress the lint check, it will simulate correctly.

ASSIGNIN

Error that an assignment is being made to an input signal. This is almost certainly a mistake, though
technically legal.

input a;

assign a = 1'b1;

Ignoring this warning will only suppress the lint check, it will simulate correctly.

ASSIGNDLY

Warns that you have an assignment statement with a delayed time in front of it, for example:

a <= #100 b;

assign #100 a = b;

Ignoring this warning may make Verilator simulations di�er from other simulators, however at one
point this was a common style so disabled by default as a code style warning.

BLKANDNBLK

BLKANDNBLK is an error that a variable comes from a mix of blocking and non-blocking assignments.

This is not illegal in SystemVerilog, but a violation of good coding practice. Verilator reports this as
an error, because ignoring this warning may make Verilator simulations di�er from other simulators.

It is generally safe to disable this error (with a "// verilator lint_o� BLKANDNBLK" metacomment
or the -Wno-BLKANDNBLK option) when one of the assignments is inside a public task, or when the
blocking and non-blocking assignments have non-overlapping bits and structure members.

Generally, this is caused by a register driven by both combo logic and a �op:

logic [1:0] foo;

always @ (posedge clk) foo[0] <= ...

always @* foo[1] = ...

Simply use a di�erent register for the �op:

logic [1:0] foo;

always @ (posedge clk) foo_flopped[0] <= ...

always @* foo[0] = foo_flopped[0];

always @* foo[1] = ...

Or, this may also avoid the error:

62

Verilator 4.108 24 ERRORS AND WARNINGS

logic [1:0] foo /*verilator split_var*/;

BLKSEQ

This indicates that a blocking assignment (=) is used in a sequential block. Generally non-blocking/delayed
assignments (<=) are used in sequential blocks, to avoid the possibility of simulator races. It can be
reasonable to do this if the generated signal is used ONLY later in the same block, however this style
is generally discouraged as it is error prone.

always @ (posedge clk) foo = ...

Disabled by default as this is a code style warning; it will simulate correctly.

BLKLOOPINIT

This indicates that the initialization of an array needs to use non-delayed assignments. This is done in
the interest of speed; if delayed assignments were used, the simulator would have to copy large arrays
every cycle. (In smaller loops, loop unrolling allows the delayed assignment to work, though it's a bit
slower than a non-delayed assignment.) Here's an example

always @ (posedge clk)

if (~reset_l) begin

for (i=0; i<`ARRAY_SIZE; i++) begin

array[i] = 0; // Non-delayed for verilator

end

This message is only seen on large or complicated loops because Verilator generally unrolls small loops.
You may want to try increasing --unroll-count (and occasionally --unroll-stmts) which will raise the
small loop bar to avoid this error.

BOUNDED

This indicates that bounded queues (e.g. "var name[$: 3]") are unsupported.

Ignoring this warning may make Verilator simulations di�er from other simulators.

BSSPACE

Warns that a backslash is followed by a space then a newline. Likely the intent was to have a backslash
directly followed by a newline (e.g. when making a `de�ne) and there's accidentally white space at the
end of the line. If the space is not accidental, suggest removing the backslash in the code as it serves
no function.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

CASEINCOMPLETE

Warns that inside a case statement there is a stimulus pattern for which there is no case item speci�ed.
This is bad style, if a case is impossible, it's better to have a "default: $stop;" or just "default: ;" so
that any design assumption violations will be discovered in simulation.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

CASEOVERLAP

Warns that inside a case statement you have case values which are detected to be overlapping. This
is bad style, as moving the order of case values will cause di�erent behavior. Generally the values can
be respeci�ed to not overlap.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

63

Verilator 4.108 24 ERRORS AND WARNINGS

CASEWITHX

Warns that a case statement contains a constant with a x. Verilator is two-state so interpret such
items as always false. Note a common error is to use a X in a case or casez statement item; often what
the user instead intended is to use a casez with ?.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

CASEX

Warns that it is simply better style to use casez, and ? in place of x's. See http://www.sunburst-
design.com/papers/CummingsSNUG1999Boston_FullParallelCase_rev1_1.pdf

Ignoring this warning will only suppress the lint check, it will simulate correctly.

CASTCONST

Warns that a dynamic cast ($cast) is unnecessary as the $cast will always succeed or fail. If it will
always fail, the $cast is useless. If it will always succeed a static cast may be preferred.

Ignoring this warning will only suppress the lint check, it will simulate correctly. On other simulators,
not �xing CASTCONST may result in decreased performance.

CDCRSTLOGIC

With --cdc only, warns that asynchronous �op reset terms come from other than primary inputs or
�opped outputs, creating the potential for reset glitches.

CLKDATA

Warns that clock signal is mixed used with/as data signal. The checking for this warning is enabled
only if user has explicitly marked some signal as clocker using command line option or in-source meta
comment (see --clk).

The warning can be disabled without a�ecting the simulation result. But it is recommended to check
the warning as this may degrade the performance of the Verilated model.

CMPCONST

Warns that you are comparing a value in a way that will always be constant. For example "X > 1"
will always be true when X is a single bit wide.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

COLONPLUS

Warns that a :+ is seen. Likely the intent was to use +: to select a range of bits. If the intent was a
range that is explicitly positive, suggest adding a space, e.g. use ": +".

Ignoring this warning will only suppress the lint check, it will simulate correctly.

COMBDLY

Warns that you have a delayed assignment inside of a combinatorial block. Using delayed assignments in
this way is considered bad form, and may lead to the simulator not matching synthesis. If this message is
suppressed, Verilator, like synthesis, will convert this to a non-delayed assignment, which may result in
logic races or other nasties. See http://www.sunburst-design.com/papers/CummingsSNUG2000SJ_NBA_rev1_2.pdf

Ignoring this warning may make Verilator simulations di�er from other simulators.

CONTASSREG

Error that a continuous assignment is setting a reg. According to IEEE Verilog, but not SystemVerilog,
a wire must be used as the target of continuous assignments.

This error is only reported when "--language 1364-1995", "--language 1364-2001", or "--language 1364-
2005" is used.

Ignoring this error will only suppress the lint check, it will simulate correctly.

64

Verilator 4.108 24 ERRORS AND WARNINGS

DECLFILENAME

Warns that a module or other declaration's name doesn't match the �lename with path and extension
stripped that it is declared in. The �lename a modules/interfaces/programs is declared in should match
the name of the module etc. so that -y directory searching will work. This warning is printed for only
the �rst mismatching module in any given �le, and -v library �les are ignored.

Disabled by default as this is a code style warning; it will simulate correctly.

DEFPARAM

Warns that the "defparam" statement was deprecated in Verilog 2001 and all designs should now be
using the #(...) format to specify parameters.

Disabled by default as this is a code style warning; it will simulate correctly.

DETECTARRAY

Error when Verilator tries to deal with a combinatorial loop that could not be �attened, and which
involves a datatype which Verilator cannot handle, such as an unpacked struct or a large unpacked
array. This typically occurs when -Wno-UNOPTFLAT has been used to override an UNOPTFLAT
warning (see below).

The solution is to break the loop, as described for UNOPTFLAT.

DIDNOTCONVERGE

Error at simulation runtime when model did not properly settle.

Verilator sometimes has to evaluate combinatorial logic multiple times, usually around code where a
UNOPTFLAT warning was issued, but disabled. For example:

always_comb b = ~a;

always_comb a = b

This code will toggle forever, and thus to prevent an in�nite loop, the executable will give the didn't
converge error.

To debug this, �rst review any UNOPTFLAT warnings that were ignored. Though typically it is safe
to ignore UNOPTFLAT (at a performance cost), at the time of issuing a UNOPTFLAT Verilator did
not know if the logic would eventually converge and assumed it would.

Next, run Verilator with --prof-cfuncs. Run make on the generated �les with "CPP_FLAGS=-
DVL_DEBUG", to allow enabling simulation runtime debug messages. Rerun the test. Now just
before the convergence error you should see additional output similar to this:

CHANGE: filename.v:1: b

CHANGE: filename.v:2: a

This means that signal b and signal a keep changing, inspect the code that modi�es these signals. Note
if many signals are getting printed then most likely all of them are oscillating. It may also be that e.g.
"a" may be oscillating, then "a" feeds signal "c" which then is also reported as oscillating.

Finally, rare, more di�cult cases can be debugged like a "C" program; either enter GDB and use its
tracing facilities, or edit the generated C++ code to add appropriate prints to see what is going on.

ENDLABEL

Warns that a label attached to a "end"-something statement does not match the label attached to the
block start.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

65

Verilator 4.108 24 ERRORS AND WARNINGS

GENCLK

Deprecated and no longer used as a warning. Used to indicate that the speci�ed signal was is generated
inside the model, and also being used as a clock.

HIERBLOCK

Warns that the top module is marked as a hierarchy block by hier_block metacomment, which is not
legal. This setting on the top module will be ignored. =item IFDEPTH

Warns that if/if else statements have exceeded the depth speci�ed with --if-depth, as they are likely
to result in slow priority encoders. Statements below unique and priority if statements are ignored.
Solutions include changing the code to a case statement, or a SystemVerilog 'unique if' or 'priority if'.

Disabled by default as this is a code style warning; it will simulate correctly.

IGNOREDRETURN

Warns that a non-void function is being called as a task, and hence the return value is being ignored.

This warning is required by IEEE. The portable way to suppress this warning (in SystemVerilog) is to
use a void cast, e.g.

void'(function_being_called_as_task());

Ignoring this warning will only suppress the lint check, it will simulate correctly.

IMPERFECTSCH

Warns that the scheduling of the model is not absolutely perfect, and some manual code edits may
result in faster performance. This warning defaults to o�, is not part of -Wall, and must be turned on
explicitly before the top module statement is processed.

IMPLICIT

Warns that a wire is being implicitly declared (it is a single bit wide output from a sub-module.)
While legal in Verilog, implicit declarations only work for single bit wide signals (not buses), do
not allow using a signal before it is implicitly declared by an instance, and can lead to dangling
nets. A better option is the /*AUTOWIRE*/ feature of Verilog-Mode for Emacs, available from
https://www.veripool.org/verilog-mode

Ignoring this warning will only suppress the lint check, it will simulate correctly.

IMPORTSTAR

Warns that an "import package::*" statement is in $unit scope. This causes the imported symbols to
pollute the global namespace, defeating much of the purpose of having a package. Generally "import
::*" should only be used inside a lower scope such as a package or module.

Disabled by default as this is a code style warning; it will simulate correctly.

IMPURE

Warns that a task or function that has been marked with /*verilator no_inline_task*/ references
variables that are not local to the task. Verilator cannot schedule these variables correctly.

Ignoring this warning may make Verilator simulations di�er from other simulators.

INCABSPATH

Warns that an `include �lename speci�es an absolute path. This means the code will not work on
any other system with a di�erent �le system layout. Instead of using absolute paths, relative paths
(preferably without any directory speci�ed whatsoever) should be used, and +incdir used on the
command line to specify the top include source directories.

Disabled by default as this is a code style warning; it will simulate correctly.

66

Verilator 4.108 24 ERRORS AND WARNINGS

INFINITELOOP

Warns that a while or for statement has a condition that is always true. and thus results in an in�nite
loop if the statement ever executes.

This might be unintended behavior if the loop body contains statements that in other simulators would
make time pass, which Verilator is ignoring due to e.g. STMTDLY warnings being disabled.

Ignoring this warning will only suppress the lint check, it will simulate correctly (i.e. hang due to the
in�nite loop).

INITIALDLY

Warns that you have a delayed assignment inside of an initial or �nal block. If this message is sup-
pressed, Verilator will convert this to a non-delayed assignment. See also the COMBDLY warning.

Ignoring this warning may make Verilator simulations di�er from other simulators.

INSECURE

Warns that the combination of options selected may be defeating the attempt to protect/obscure
identi�ers or hide information in the model. Correct the options provided, or inspect the output code
to see if the information exposed is acceptable.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

LATCH

Warns that a signal is not assigned in all control paths of a combinational always block, resulting in the
inference of a latch. For intentional latches, consider using the always_latch (SystemVerilog) keyword
instead. The warning may be disabled with a lint_o� pragma around the always block.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

LITENDIAN

Warns that a packed vector is declared with little endian bit numbering (i.e. [0:7]). Big endian bit
numbering is now the overwhelming standard, and little numbering is now thus often due to simple
oversight instead of intent.

Also warns that an instance is declared with little endian range (i.e. [0:7] or [7]) and is connected to
a N-wide signal. Based on IEEE the bits will likely be backwards from what you expect (i.e. instance
[0] will connect to signal bit [N-1] not bit [0]).

Ignoring this warning will only suppress the lint check, it will simulate correctly.

MODDUP

Warns that a module has multiple de�nitions. Generally this indicates a coding error, or a mistake
in a library �le and it's good practice to have one module per �le (and only put each �le once on the
command line) to avoid these issues. For some gate level netlists duplicates are sometimes unavoidable,
and MODDUP should be disabled.

Ignoring this warning will cause the more recent module de�nition to be discarded.

MULTIDRIVEN

Warns that the speci�ed signal comes from multiple always blocks. This is often unsupported by
synthesis tools, and is considered bad style. It will also cause longer simulation runtimes due to
reduced optimizations.

Ignoring this warning will only slow simulations, it will simulate correctly.

MULTITOP

Warns that there are multiple top level modules, that is modules not instantiated by any other module,
and both modules were put on the command line (not in a library). Three likely cases:

67

Verilator 4.108 24 ERRORS AND WARNINGS

1. A single module is intended to be the top. This warning then occurs because some low level instance
is being read in, but is not really needed as part of the design. The best solution for this situation is
to ensure that only the top module is put on the command line without any �ags, and all remaining
library �les are read in as libraries with -v, or are automatically resolved by having �lenames that
match the module names.

2. A single module is intended to be the top, the name of it is known, and all other modules should be
ignored if not part of the design. The best solution is to use the --top option to specify the top module's
name. All other modules that are not part of the design will be for the most part ignored (they must be
clean in syntax and their contents will be removed as part of the Verilog module elaboration process.)

3. Multiple modules are intended to be design tops, e.g. when linting a library �le. As multiple
modules are desired, disable the MULTITOP warning. All input/outputs will go uniquely to each
module, with any con�icting and identical signal names being made unique by adding a pre�x based
on the top module name followed by __02E (a Verilator-encoded ASCII ".'). This renaming is done
even if the two modules' signals seem identical, e.g. multiple modules with a "clk" input.

NOLATCH

Warns that no latch was detected in an always_latch block. The warning may be disabled with a
lint_o� pragma around the always block, but recoding using a regular always may be more appropriate.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

PINCONNECTEMPTY

Warns that an instance has a pin which is connected to .pin_name(), e.g. not another signal, but
with an explicit mention of the pin. It may be desirable to disable PINCONNECTEMPTY, as this
indicates intention to have a no-connect.

Disabled by default as this is a code style warning; it will simulate correctly.

PINMISSING

Warns that a module has a pin which is not mentioned in an instance. If a pin is not missing it should
still be speci�ed on the instance declaration with a empty connection, using "(.pin_name())".

Ignoring this warning will only suppress the lint check, it will simulate correctly.

PINNOCONNECT

Warns that an instance has a pin which is not connected to another signal.

Disabled by default as this is a code style warning; it will simulate correctly.

PKGNODECL

Error that a package/class appears to have been referenced that has not yet been declared. According
to IEEE 1800-2017 26.3 all packages must be declared before being used.

PROCASSWIRE

Error that a procedural assignment is setting a wire. According to IEEE, a var/reg must be used as
the target of procedural assignments.

RANDC

Warns that the 'randc' keyword is currently unsupported, and that it is being converted to 'rand'.

REALCVT

Warns that a real number is being implicitly rounded to an integer, with possible loss of precision.

REDEFMACRO

Warns that you have rede�ned the same macro with a di�erent value, for example:

68

Verilator 4.108 24 ERRORS AND WARNINGS

`define MACRO def1

//...

`define MACRO otherdef

The best solution is to use a di�erent name for the second macro. If this is not possible, add a undef
to indicate the code is overriding the value:

`define MACRO def1

//...

`undef MACRO

`define MACRO otherdef

SELRANGE

Warns that a selection index will go out of bounds:

wire vec[6:0];

initial out = vec[7]; // There is no 7

Verilator will assume zero for this value, instead of X. Note that in some cases this warning may be
false, when a condition upstream or downstream of the access means the access out of bounds will
never execute or be used.

wire vec[6:0];

initial begin

seven = 7;

...

if (seven != 7) out = vec[seven]; // Never will use vec[7]

SHORTREAL

Warns that Verilator does not support "shortreal" and they will be automatically promoted to "real".
The recommendation is to replace any "shortreal" in the code with "real", as "shortreal" is not widely
supported across industry tools.

Ignoring this warning may make Verilator simulations di�er from other simulators, if the increased
precision of real a�ects your model or DPI calls.

SPLITVAR

Warns that a variable with a split_var metacomment was not split. Some possible reasons for this
are:

* The datatype of the variable is not supported for splitting. (e.g. is a real).

* The access pattern of the variable can not be determined statically. (e.g. is accessed as a memory).

* The index of the array exceeds the array size.

* The variable is accessed from outside using dotted reference. (e.g. top.instance0.variable0 = 1).

* The variable is not declared in a module, but in a package or an interface.

* The variable is a parameter, localparam, genvar, or queue.

* The variable is tristate or bidirectional. (e.g. inout or ref).

STMTDLY

Warns that you have a statement with a delayed time in front of it, for example:

#100 $finish;

69

Verilator 4.108 24 ERRORS AND WARNINGS

Ignoring this warning may make Verilator simulations di�er from other simulators.

SYMRSVDWORD

Warning that a symbol matches a C++ reserved word and using this as a symbol name would result in
odd C++ compiler errors. You may disable this warning, but the symbol will be renamed by Verilator
to avoid the con�ict.

SYNCASYNCNET

Warns that the speci�ed net is used in at least two di�erent always statements with posedge/negedges
(i.e. a �op). One usage has the signal in the sensitivity list and body, probably as an async reset, and
the other usage has the signal only in the body, probably as a sync reset. Mixing sync and async resets
is usually a mistake. The warning may be disabled with a lint_o� pragma around the net, or either
�opped block.

Disabled by default as this is a code style warning; it will simulate correctly.

TASKNSVAR

Error when a call to a task or function has an inout from that task tied to a non-simple signal. Instead
connect the task output to a temporary signal of the appropriate width, and use that signal to set the
appropriate expression as the next statement. For example:

task foo(inout sig); ... endtask

always @* begin

foo(bus_we_select_from[2]); // Will get TASKNSVAR error

end

Change this to:

reg foo_temp_out;

always @* begin

foo(foo_temp_out);

bus_we_select_from[2] = foo_temp_out;

end

Verilator doesn't do this conversion for you, as some more complicated cases would result in simulator
mismatches.

TICKCOUNT

Warns that the number of ticks to delay a $past variable is greater than 10. At present Verilator
e�ectively creates a �op for each delayed signals, and as such any large counts may lead to large design
size increases.

Ignoring this warning will only slow simulations, it will simulate correctly.

TIMESCALEMOD

Error that `timescale is used in some but not all modules. Recommend using --timescale argument, or
in front of all modules use:

`include "timescale.vh"

Then in that �le set the timescale.

This is an error due to IEEE speci�cations, but it may be disabled similar to warnings. Ignoring this
error may result in a module having an unexpected timescale.

70

Verilator 4.108 24 ERRORS AND WARNINGS

UNDRIVEN

Warns that the speci�ed signal has no source. Verilator is fairly liberal in the usage calculations;
making a signal public, or setting only a single array element marks the entire signal as driven.

Disabled by default as this is a code style warning; it will simulate correctly.

UNOPT

Warns that due to some construct, optimization of the speci�ed signal or block is disabled. The
construct should be cleaned up to improve simulation performance.

A less obvious case of this is when a module instantiates two submodules. Inside submodule A, signal
I is input and signal O is output. Likewise in submodule B, signal O is an input and I is an output.
A loop exists and a UNOPT warning will result if AI & AO both come from and go to combinatorial
blocks in both submodules, even if they are unrelated always blocks. This a�ects performance because
Verilator would have to evaluate each submodule multiple times to stabilize the signals crossing between
the modules.

Ignoring this warning will only slow simulations, it will simulate correctly.

UNOPTFLAT

Warns that due to some construct, optimization of the speci�ed signal is disabled. The signal reported
includes a complete scope to the signal; it may be only one particular usage of a multiply instantiated
block. The construct should be cleaned up to improve simulation performance; two times better
performance may be possible by �xing these warnings.

Unlike the UNOPT warning, this occurs after �attening the netlist, and indicates a more basic problem,
as the less obvious case described under UNOPT does not apply.

Often UNOPTFLAT is caused by logic that isn't truly circular as viewed by synthesis which analyzes
interconnection per-bit, but is circular to simulation which analyzes per-bus:

wire [2:0] x = {x[1:0], shift_in};

This statement needs to be evaluated multiple times, as a change in "shift_in" requires "x" to be
computed 3 times before it becomes stable. This is because a change in "x" requires "x" itself to
change value, which causes the warning.

For signi�cantly better performance, split this into 2 separate signals:

wire [2:0] xout = {x[1:0], shift_in};

and change all receiving logic to instead receive "xout". Alternatively, change it to

wire [2:0] x = {xin[1:0], shift_in};

and change all driving logic to instead drive "xin".

With this change this assignment needs to be evaluated only once. These sort of changes may also
speed up your traditional event driven simulator, as it will result in fewer events per cycle.

The most complicated UNOPTFLAT path we've seen was due to low bits of a bus being generated
from an always statement that consumed high bits of the same bus processed by another series of
always blocks. The �x is the same; split it into two separate signals generated from each block.

Another way to resolve this warning is to add a split_var metacomment described above. This will
cause the variable to be split internally, potentially resolving the con�ict. If you run with --report-
unopt�at Verilator will suggest possible candidates for split_var.

The UNOPTFLAT warning may also be due to clock enables, identi�ed from the reported path going
through a clock gating instance. To �x these, use the clock_enable meta comment described above.

71

Verilator 4.108 24 ERRORS AND WARNINGS

The UNOPTFLAT warning may also occur where outputs from a block of logic are independent, but
occur in the same always block. To �x this, use the isolate_assignments meta comment described
above.

To assist in resolving UNOPTFLAT, the option --report-unoptflat can be used, which will provide
suggestions for variables that can be split up, and a graph of all the nodes connected in the loop. See
the Arguments section for more details.

Ignoring this warning will only slow simulations, it will simulate correctly.

UNOPTTHREADS

Warns that the thread scheduler was unable to partition the design to �ll the requested number of
threads.

One workaround is to request fewer threads with --threads.

Another possible workaround is to allow more MTasks in the simulation runtime, by increasing the
value of --threads-max-mtasks. More MTasks will result in more communication and synchronization
overhead at simulation runtime; the scheduler attempts to minimize the number of MTasks for this
reason.

Ignoring this warning will only slow simulations, it will simulate correctly.

UNPACKED

Warns that unpacked structs and unions are not supported.

Ignoring this warning will make Verilator treat the structure as packed, which may make Verilator
simulations di�er from other simulators. This downgrading may also result what would normally be a
legal unpacked struct/array inside an unpacked struct/array becoming an illegal unpacked struct/array
inside a packed struct/array.

UNSIGNED

Warns that you are comparing a unsigned value in a way that implies it is signed, for example "X <
0" will always be false when X is unsigned.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

UNSUPPORTED

UNSUPPORTED is an error that the construct might be legal according to IEEE but is not currently
supported.

This error may be ignored with --bbox-unsup, however this will make the design simulate incorrectly;
see the details under --bbox-unsup.

UNUSED

Warns that the speci�ed signal or parameter is never used/consumed. Verilator is fairly liberal in
the usage calculations; making a signal public, a signal matching --unused-regexp ("*unused*") or
accessing only a single array element marks the entire signal as used.

Disabled by default as this is a code style warning; it will simulate correctly.

A recommended style for unused nets is to put at the bottom of a �le code similar to the following:

wire _unused_ok = &{1'b0,

sig_not_used_a,

sig_not_used_yet_b, // To be fixed

1'b0};

The reduction AND and constant zeros mean the net will always be zero, so won't use simulation
runtime. The redundant leading and trailing zeros avoid syntax errors if there are no signals between
them. The magic name "unused" (-unused-regexp) is recognized by Verilator and suppresses warnings;

72

Verilator 4.108 24 ERRORS AND WARNINGS

if using other lint tools, either teach it to the tool to ignore signals with "unused" in the name, or put
the appropriate lint_o� around the wire. Having unused signals in one place makes it easy to �nd
what is unused, and reduces the number of lint_o� pragmas, reducing bugs.

USERINFO, USERWARN, USERERROR, USERFATAL

A SystemVerilog elaboration-time assertion print was executed.

VARHIDDEN

Warns that a task, function, or begin/end block is declaring a variable by the same name as a variable
in the upper level module or begin/end block (thus hiding the upper variable from being able to be
used.) Rename the variable to avoid confusion when reading the code.

Disabled by default as this is a code style warning; it will simulate correctly.

WIDTH

Warns that based on width rules of Verilog, two operands have di�erent widths. Verilator generally
can intuit the common usages of widths, and you shouldn't need to disable this message like you do
with most lint programs. Generally other than simple mistakes, you have two solutions:

If it's a constant 0 that's 32 bits or less, simply leave it unwidthed. Verilator considers zero to be any
width needed.

Concatenate leading zeros when doing arithmetic. In the statement

wire [5:0] plus_one = from[5:0] + 6'd1 + carry[0];

The best �x, which clari�es intent and will also make all tools happy is:

wire [5:0] plus_one = from[5:0] + 6'd1 + {5'd0, carry[0]};

Ignoring this warning will only suppress the lint check, it will simulate correctly.

WIDTHCONCAT

Warns that based on width rules of Verilog, a concatenate or replication has an indeterminate width.
In most cases this violates the Verilog rule that widths inside concatenates and replicates must be
sized, and should be �xed in the code.

wire [63:0] concat = {1, 2};

An example where this is technically legal (though still bad form) is:

parameter PAR = 1;

wire [63:0] concat = {PAR, PAR};

The correct �x is to either size the 1 ("32'h1"), or add the width to the parameter de�nition ("parameter
[31:0]"), or add the width to the parameter usage ("{PAR[31:0],PAR[31:0]}".

The following describes the less obvious errors:

Internal Error

This error should never occur �rst, though may occur if earlier warnings or error messages have
corrupted the program. If there are no other warnings or errors, submit a bug report.

Unsupported:

This error indicates that you are using a Verilog language construct that is not yet supported in
Verilator. See the Limitations chapter.

73

Verilator 4.108 26 FAQ/FREQUENTLY ASKED QUESTIONS

25 DEPRECATIONS

The following deprecated items are scheduled for future removal:

C++11 compiler support

Verilator currently requires C++11 or newer compilers. Verilator will require C++14 or newer com-
pilers for both compiling Verilator and compiling Verilated models no sooner than January 2022.

Con�guration File -msg

The -msg argument to lint_o� has been replaced with -rule. -msg is planned for removal no sooner
than January 2021.

XML locations

The XML fl attribute has been replaced with loc. fl is planned for removal no sooner than January
2021.

26 FAQ/FREQUENTLY ASKED QUESTIONS

Can I contribute?

Please contribute! Just submit a pull request, or raise an issue to discuss if looking for something to
help on. For more information see our contributor agreement.

How widely is Verilator used?

Verilator is used by many of the largest silicon design companies, and all the way down to college
projects. Verilator is one of the "big 4" simulators, meaning one of the 4 main SystemVerilog sim-
ulators available, namely the commercial products Synopsys VCS (tm), Mentor Questa/ModelSim
(tm), Cadence Xcelium/Incisive/NC-Verilog/NC-Sim (tm), and the open-source Verilator. The three
commercial o�erings are often collectively called the "big 3" simulators.

Does Verilator run under Windows?

Yes, using Cygwin. Verilated output also compiles under Microsoft Visual C++, but this is not tested
every release.

Can you provide binaries?

You can install Verilator via the system package manager (apt, yum, etc.) on many Linux distributions,
including Debian, Ubuntu, SuSE, Fedora, and others. These packages are provided by the Linux
distributions and generally will lag the version of the mainline Verilator repository. If no binary
package is available for your distribution, how about you set one up? Please contact the authors for
assistance.

How can it be faster than (name-a-big-3-closed-source-simulator)?

Generally, the implied part of the question is "... with all of the manpower they can put into developing
it."

Most simulators have to be compliant with the complete IEEE 1364 (Verilog) and IEEE 1800 (Sys-
temVerilog) standards, meaning they have to be event driven. This prevents them from being able to
reorder blocks and make netlist-style optimizations, which are where most of the gains come from.

You should not be scared by non-compliance. Your synthesis tool isn't compliant with the whole
standard to start with, so your simulator need not be either. Verilator is closer to the synthesis
interpretation, so this is a good thing for getting working silicon.

74

Verilator 4.108 26 FAQ/FREQUENTLY ASKED QUESTIONS

Will Verilator output remain under my own license?

Yes, it's just like using GCC on your programs; this is why Verilator uses the "GNU *Lesser* Public
License Version 3" instead of the more typical "GNU Public License". See the licenses for details, but
in brief, if you change Verilator itself or the header �les Verilator includes, you must make the source
code available under the GNU Lesser Public License. However, Verilator output (the Verilated code)
only "include"s the licensed �les, and so you are NOT required to release any output from Verilator.

You also have the option of using the Perl Artistic License, which again does not require you to
release your Verilog or generated code, and also allows you to modify Verilator for internal use without
distributing the modi�ed version. But please contribute back to the community!

One limit is that you cannot under either license release a commercial Verilog simulation product
incorporating Verilator without making the source code available.

As is standard with Open Source, contributions back to Verilator will be placed under the Verilator
copyright and LGPL/Artistic license. Small test cases will be released into the public domain so they
can be used anywhere, and large tests under the LGPL/Artistic, unless requested otherwise.

Why is running Verilator (to create a model) so slow?

Verilator needs more memory than the resulting simulator will require, as Verilator internally creates
all of the state of the resulting generated simulator in order to optimize it. If it takes more than a few
minutes or so (and you're not using --debug since debug mode is disk bound), see if your machine is
paging; most likely you need to run it on a machine with more memory. Very large designs are known
to have topped 16GB resident set size.

How do I generate waveforms (traces) in C++?

See the next question for tracing in SystemC mode.

A. Add the --trace switch to Verilator, and in your top level C code, call Verilated::traceEverOn(true).
Then you may use $dump�le and $dumpvars to enable traces, same as with any Verilog simulator. See
examples/make_tracing_c.

B. Or, for �ner-grained control, or C++ �les with multiple Verilated modules you may also create the
trace purely from C++. Create a VerilatedVcdC object, and in your main loop call "trace_object-
>dump(time)" every time step, and �nally call "trace_object->close()". You also need to compile veri-
lated_vcd_c.cpp and add it to your link, preferably by adding the dependencies in $(VK_GLOBAL_OBJS)
to your Make�le's link rule. This is done for you if using the Verilator --exe �ag. Note you can also
call ->trace on multiple Verilated objects with the same trace �le if you want all data to land in the
same output �le.

#include "verilated_vcd_c.h"

...

int main(int argc, char** argv, char** env) {

...

Verilated::traceEverOn(true);

VerilatedVcdC* tfp = new VerilatedVcdC;

topp->trace(tfp, 99); // Trace 99 levels of hierarchy

tfp->open("obj_dir/t_trace_ena_cc/simx.vcd");

...

while (sc_time_stamp() < sim_time && !Verilated::gotFinish()) {

main_time += #;

tfp->dump(main_time);

}

tfp->close();

}

How do I generate waveforms (traces) in SystemC?

75

Verilator 4.108 26 FAQ/FREQUENTLY ASKED QUESTIONS

A. Add the --trace switch to Verilator, and in your top level sc_main, call Verilated::traceEverOn(true).
Then you may use $dump�le and $dumpvars to enable traces, same as with any Verilog simulator, see
the non-SystemC example in examples/make_tracing_c. This will trace only the module containing
the $dumpvar.

B. Or, you may create a trace purely from SystemC, which may trace all Verilated designs in the
SystemC model. Create a VerilatedVcdSc object as you would create a normal SystemC trace �le. For
an example, see the call to VerilatedVcdSc in the examples/make_tracing_sc/sc_main.cpp �le of the
distribution, and below.

Alternatively you may use the C++ trace mechanism described in the previous question, note the
timescale and timeprecision will be inherited from your SystemC settings.

You also need to compile verilated_vcd_sc.cpp and verilated_vcd_c.cpp and add them to your link,
preferably by adding the dependencies in $(VK_GLOBAL_OBJS) to your Make�le's link rule. This
is done for you if using the Verilator --exe �ag.

Note you can also call ->trace on multiple Verilated objects with the same trace �le if you want all
data to land in the same output �le.

When using SystemC 2.3, the SystemC library must have been built with the experimental simu-
lation phase callback based tracing disabled. This is disabled by default when building SystemC
with its con�gure based build system, but when building SystemC with CMake, you must pass -
DENABLE_PHASE_CALLBACKS_TRACING=OFF to disable this feature.

#include "verilated_vcd_sc.h"

...

int main(int argc, char** argv, char** env) {

...

Verilated::traceEverOn(true);

VerilatedVcdSc* tfp = new VerilatedVcdSc;

topp->trace(tfp, 99); // Trace 99 levels of hierarchy

tfp->open("obj_dir/t_trace_ena_cc/simx.vcd");

...

sc_start(1);

...

tfp->close();

}

How do I generate FST waveforms (traces) in C++?

FST is a trace �le format developed by GTKWave. Verilator provides basic FST support. To dump
traces in FST format, add the --trace-fst switch to Verilator and either A. use $dump�le/$dumpvars
in Verilog as described in the VCD example above, or B. in C++ change the include described in the
VCD example above:

#include "verilated_fst_c.h"

VerilatedFstC* tfp = new VerilatedFstC;

Note that currently supporting both FST and VCD in a single simulation is impossible, but such
requirement should be rare. You can however ifdef around the trace format in your C++ main loop,
and select VCD or FST at build time, should you require.

How do I generate FST waveforms (aka dumps or traces) in SystemC?

The FST library from GTKWave does not currently support SystemC; use VCD format instead.

How do I view waveforms (aka dumps or traces)?

Verilator creates standard VCD (Value Change Dump) and FST �les. VCD �les are viewable with the
open source GTKWave (recommended) or Dinotrace (legacy) programs, or any of the many closed-
source o�erings; FST is supported only by GTKWave.

76

Verilator 4.108 26 FAQ/FREQUENTLY ASKED QUESTIONS

How do I reduce the size of large waveform (trace) �les?

First, instead of calling VerilatedVcdC->open at the beginning of time, delay calling it until the time
stamp where you want tracing to begin. Likewise you can also call VerilatedVcdC->open before the
end of time (perhaps a short period after you detect a veri�cation error).

Next, add /*verilator tracing_o�*/ to any very low level modules you never want to trace (such as
perhaps library cells). Finally, use the --trace-depth option to limit the depth of tracing, for example
--trace-depth 1 to see only the top level signals.

Also be sure you write your trace �les to a local solid-state drive, instead of to a network drive. Network
drives are generally far slower.

You can also consider using FST tracing instead of VCD. FST dumps are a fraction of the size of the
equivalent VCD. FST tracing can be slower than VCD tracing, but it might be the only option if the
VCD �le size is prohibitively large.

How do I do coverage analysis?

Verilator supports both block (line) coverage and user inserted functional coverage.

First, run verilator with the --coverage option. If you are using your own make�le, compile the model
with the GCC �ag -DVM_COVERAGE (if using the make�le provided by Verilator, it will do this for
you).

At the end of your test, call VerilatedCov::write passing the name of the coverage data �le (typically
"logs/coverage.dat").

Run each of your tests in di�erent directories. Each test will create a logs/coverage.dat �le.

After running all of your tests, execute the verilator_coverage tool. The verilator_coverage tool reads
the logs/coverage.dat �le(s), and creates an annotated source code listing showing code coverage details.

For an example, after running 'make test' in the Verilator distribution, see the examples/make_tracing_c/logs
directory. Grep for lines starting with '%' to see what lines Verilator believes need more coverage.

Info �les can be written by verilator_coverage for import to lcov. This enables use of genhtml for
HTML reports and importing reports to sites such as https://codecov.io.

Where is the translate_o� command? (How do I ignore a construct?)

Translate on/o� pragmas are generally a bad idea, as it's easy to have mismatched pairs, and you can't
see what another tool sees by just preprocessing the code. Instead, use the preprocessor; Verilator
de�nes the "VERILATOR" de�ne for you, so just wrap the code in an ifndef region:

`ifndef VERILATOR

Something_Verilator_Dislikes;

`endif

Most synthesis tools similarly de�ne SYNTHESIS for you.

Why do I get "unexpected do" or "unexpected bit" errors?

The words do, bit, ref, return, and others are reserved keywords in SystemVerilog. Older Verilog
code might use these as identi�ers. You should change your code to not use them to ensure it works
with newer tools. Alternatively, surround them by the Verilog 2005/SystemVerilog begin_keywords
pragma to indicate Verilog 2001 code.

`begin_keywords "1364-2001"

integer bit; initial bit = 1;

`end_keywords

If you want the whole design to be parsed as Verilog 2001, please see the --default-language option.

77

Verilator 4.108 26 FAQ/FREQUENTLY ASKED QUESTIONS

How do I prevent my assertions from �ring during reset?

Call Verilated::assertOn(false) before you �rst call the model, then turn it back on after reset. It
defaults to true. When false, all assertions controlled by --assert are disabled.

Why do I get "unde�ned reference to `sc_time_stamp()'"?

In C++ (non SystemC) code you need to de�ne this function so that the simulator knows the current
time. See the "CONNECTING TO C++" examples.

Why do I get "unde�ned reference to `VL_RAND_RESET_I' or `Verilated::...'"?

You need to link your compiled Verilated code against the verilated.cpp �le found in the include
directory of the Verilator kit. This is one target in the $(VK_GLOBAL_OBJS) make variable, which
should be part of your Make�le's link rule. If you use --exe, this is done for you.

Is the PLI supported?

Only somewhat. More speci�cally, the common PLI-ish calls $display, $�nish, $stop, $time, $write are
converted to C++ equivalents. You can also use the "import DPI" SystemVerilog feature to call C
code (see the chapter above). There is also limited VPI access to public signals.

If you want something more complex, since Verilator emits standard C++ code, you can simply write
your own C++ routines that can access and modify signal values without needing any PLI interface
code, and call it with $c("{any_c++_statement}").

How do I make a Verilog module that contain a C++ object?

You need to add the object to the structure that Verilator creates, then use $c to call a method inside
your object. The test_regress/t/t_extend_class �les show an example of how to do this.

How do I get faster build times?

When running make pass the make variable VM_PARALLEL_BUILDS=1 so that builds occur in
parallel. Note this is now set by default if an output �le was large enough to be split due to the
--output-split option.

Verilator emits any infrequently executed "cold" routines into separate __Slow.cpp �les. This can
accelerate compilation as optimization can be disabled on these routines. See the OPT_FAST and
OPT_SLOW make variables and the BENCHMARKING & OPTIMIZATION section of the manual.

Use a recent compiler. Newer compilers tend to be faster.

Compile in parallel on many machines and use caching; see the web for the ccache, distcc and icecream
packages. ccache will skip GCC runs between identical source builds, even across di�erent users. If
ccache was installed when Verilator was built it is used, or see OBJCACHE environment variable to
override this. Also see the --output-split option.

To reduce the compile time of classes that use a Verilated module (e.g. a top CPP �le) you may wish
to add /*verilator no_inline_module*/ to your top level module. This will decrease the amount of
code in the model's Verilated class, improving compile times of any instantiating top level C++ code,
at a relatively small cost of execution performance.

Why do so many �les need to recompile when I add a signal?

Adding a new signal requires the symbol table to be recompiled. Verilator uses one large symbol table,
as that results in 2-3 less assembly instructions for each signal access. This makes the execution time
10-15% faster, but can result in more compilations when something changes.

How do I access Verilog functions/tasks in C?

Use the SystemVerilog Direct Programming Interface. You write a Verilog function or task with
input/outputs that match what you want to call in with C. Then mark that function as a DPI export
function. See the DPI chapter in the IEEE Standard.

78

Verilator 4.108 26 FAQ/FREQUENTLY ASKED QUESTIONS

How do I access C++ functions/tasks in Verilog?

Use the SystemVerilog Direct Programming Interface. You write a Verilog function or task with
input/outputs that match what you want to call in with C. Then mark that function as a DPI import
function. See the DPI chapter in the IEEE Standard.

How do I access signals in C?

The best thing to do is to make a SystemVerilog "export DPI" task or function that accesses that
signal, as described in the DPI chapter in the manual and DPI tutorials on the web. This will allow
Verilator to better optimize the model and should be portable across simulators.

If you really want raw access to the signals, declare the signals you will be accessing with a /*verilator
public*/ comment before the closing semicolon. Then scope into the C++ class to read the value of
the signal, as you would any other member variable.

Signals are the smallest of 8-bit unsigned chars (equivalent to uint8_t), 16-bit unsigned shorts (uint16_t),
32-bit unsigned longs (uint32_t), or 64-bit unsigned long longs (uint64_t) that �ts the width of the
signal. Generally, you can use just uint32_t's for 1 to 32 bits, or vluint64_t for 1 to 64 bits, and the
compiler will properly up-convert smaller entities. Note even signed ports are declared as unsigned;
you must sign extend yourself to the appropriate signal width.

Signals wider than 64 bits are stored as an array of 32-bit uint32_t's. Thus to read bits 31:0, access
signal[0], and for bits 63:32, access signal[1]. Unused bits (for example bit numbers 65-96 of a 65-bit
vector) will always be zero. If you change the value you must make sure to pack zeros in the unused
bits or core-dumps may result, because Verilator strips array bound checks where it believes them to
be unnecessary to improve performance.

In the SYSTEMC example above, if you had in our.v:

input clk /*verilator public*/;

// Note the placement of the semicolon above

From the sc_main.cpp �le, you'd then:

#include "Vour.h"

#include "Vour_our.h"

cout << "clock is " << top->our->clk << endl;

In this example, clk is a bool you can read or set as any other variable. The value of normal signals
may be set, though clocks shouldn't be changed by your code or you'll get strange results.

Should a module be in Verilog or SystemC?

Sometimes there is a block that just interconnects instances, and have a choice as to if you write it
in Verilog or SystemC. Everything else being equal, best performance is when Verilator sees all of the
design. So, look at the hierarchy of your design, labeling instances as to if they are SystemC or Verilog.
Then:

A module with only SystemC instances below must be SystemC.

A module with a mix of Verilog and SystemC instances below must be SystemC. (As Verilator cannot
connect to lower-level SystemC instances.)

A module with only Verilog instances below can be either, but for best performance should be Verilog.
(The exception is if you have a design that is instantiated many times; in this case Verilating one of
the lower modules and instantiating that Verilated instances multiple times into a SystemC module
may be faster.)

79

Verilator 4.108 28 HISTORY

27 BUGS

First, check the LANGUAGE LIMITATIONS section.

Next, try the --debug switch. This will enable additional internal assertions, and may help identify the
problem.

Finally, reduce your code to the smallest possible routine that exhibits the bug. Even better, create a test
in the test_regress/t directory, as follows:

cd test_regress

cp -p t/t_EXAMPLE.pl t/t_BUG.pl

cp -p t/t_EXAMPLE.v t/t_BUG.v

There are many hints on how to write a good test in the driver.pl documentation which can be seen by
running:

cd $VERILATOR_ROOT # Need the original distribution kit

test_regress/driver.pl --help

Edit t/t_BUG.pl to suit your example; you can do anything you want in the Verilog code there; just make
sure it retains the single clk input and no outputs. Now, the following should fail:

cd $VERILATOR_ROOT # Need the original distribution kit

cd test_regress

t/t_BUG.pl # Run on Verilator

t/t_BUG.pl --debug # Run on Verilator, passing --debug to Verilator

t/t_BUG.pl --vcs # Run on VCS simulator

t/t_BUG.pl --nc|--iv|--ghdl # Likewise on other simulators

The test driver accepts a number of options, many of which mirror the main Verilator option. For example
the previous test could have been run with debugging enabled. The full set of test options can be seen by
running driver.pl --help as shown above.

Finally, report the bug using the bug tracker at https://verilator.org/issues. The bug will become publicly
visible; if this is unacceptable, mail the bug report to wsnyder@wsnyder.org.

28 HISTORY

Verilator was conceived in 1994 by Paul Wasson at the Core Logic Group at Digital Equipment Corporation.
The Verilog code that was converted to C was then merged with a C based CPU model of the Alpha processor
and simulated in a C based environment called CCLI.

In 1995 Verilator started being used also for Multimedia and Network Processor development inside Digital.
Duane Galbi took over active development of Verilator, and added several performance enhancements. CCLI
was still being used as the shell.

80

Verilator 4.108 30 CONTRIBUTORS

In 1998, through the e�orts of existing DECies, mainly Duane Galbi, Digital graciously agreed to release the
source code. (Subject to the code not being resold, which is compatible with the GNU Public License.)

In 2001, Wilson Snyder took the kit, and added a SystemC mode, and called it Verilator2. This was the
�rst packaged public release.

In 2002, Wilson Snyder created Verilator 3.000 by rewriting Verilator from scratch in C++. This added
many optimizations, yielding about a 2-5x performance gain.

In 2009, major SystemVerilog and DPI language support was added.

In 2018, Verilator 4.000 was released with multithreaded support.

Currently, various language features and performance enhancements are added as the need arises. Verilator
is now about 3x faster than in 2002, and is faster than most (if not every) other simulator.

29 AUTHORS

When possible, please instead report bugs to https://verilator.org/issues.

Wilson Snyder <wsnyder@wsnyder.org>

Major concepts by Paul Wasson, Duane Galbi, John Coiner and Jie Xu.

30 CONTRIBUTORS

Many people have provided ideas and other assistance with Verilator.

Verilator is receiving major development support from the CHIPS Alliance.

Previous major corporate sponsors of Verilator, by providing signi�cant contributions of time or funds
included include Atmel Corporation, Cavium Inc., Compaq Corporation, Digital Equipment Corporation,
Embecosm Ltd., Hicamp Systems, Intel Corporation, Mindspeed Technologies Inc., MicroTune Inc., picoChip
Designs Ltd., Sun Microsystems Inc., Nauticus Networks Inc., and SiCortex Inc.

The people who have contributed major functionality are Byron Bradley, Jeremy Bennett, Lane Brooks,
John Coiner, Duane Galbi, Geza Lore, Todd Strader, Stefan Wallentowitz, Paul Wasson, Jie Xu, and Wilson
Snyder. Major testers included Je� Dutton, Jonathon Donaldson, Ralf Karge, David Hewson, Iztok Jeras,
Wim Michiels, Alex Solomatnikov, Sebastien Van Cauwenberghe, Gene Weber, and Cli�ord Wolf.

Some of the people who have provided ideas, and feedback for Verilator include: David Addison, Tariq B.
Ahmad, Nikana Anastasiadis, Hans Van Antwerpen, Vasu Arasanipalai, Jens Arm, Sharad Bagri, Matthew
Ballance, Andrew Bardsley, Matthew Barr, Geo� Barrett, Julius Baxter, Jeremy Bennett, Michael Berman,
Victor Besyakov, Moinak Bhattacharyya, David Binderman, Piotr Binkowski, Johan Bjork, David Black,
Tymoteusz Blazejczyk, Daniel Bone, Gregg Bouchard, Christopher Boumenot, Nick Bowler, Byron Bradley,
Bryan Brady, Maarten De Braekeleer, Charlie Brej, J Briquet, Lane Brooks, John Brownlee, Je� Bush,
Lawrence Butcher, Tony Bybell, Ted Campbell, Chris Candler, Lauren Carlson, Donal Casey, Sebastien Van
Cauwenberghe, Alex Chadwick, Terry Chen, Yi-Chung Chen, Enzo Chi, Robert A. Clark, Allan Cochrane,
John Coiner, Gianfranco Costamagna, Sean Cross, George Cuan, Joe DErrico, Lukasz Dalek, Laurens van

81

Verilator 4.108 31 DISTRIBUTION

Dam, Gunter Dannoritzer, Ashutosh Das, Bernard Deadman, John Demme, Mike Denio, John Deroo, Philip
Derrick, John Dickol, Ruben Diez, Danny Ding, Jacko Dirks, Ivan Djordjevic, Jonathon Donaldson, Leendert
van Doorn, Sebastian Dressler, Alex Duller, Je� Dutton, Tomas Dzetkulic, Usuario Eda, Charles Eddleston,
Chandan Egbert, Joe Eiler, Ahmed El-Mahmoudy, Trevor Elbourne, Mats Engstrom, Robert Farrell, Eu-
gen Fekete, Fabrizio Ferrandi, Udi Finkelstein, Brian Flachs, Andrea Foletto, Bob Fredieu, Duane Galbi,
Benjamin Gartner, Christian Gelinek, Peter Gerst, Glen Gibb, Michael Gielda, Shankar Giri, Dan Gis-
selquist, Petr Gladkikh, Sam Gladstone, Amir Gonnen, Chitlesh Goorah, Kai Gossner, Sergi Granell, Al
Grant, Alexander Grobman, Xuan Guo, Driss Hafdi, Neil Hamilton, James Hanlon, Oyvind Harboe, Jannis
Harder, Junji Hashimoto, Thomas Hawkins, Mitch Hayenga, Robert Henry, Stephen Henry, David Hew-
son, Jamey Hicks, Joel Holdsworth, Andrew Holme, Hiroki Honda, Alex Hornung, David Horton, Peter
Horvath, Jae Hossell, Alan Hunter, James Hutchinson, Jamie Iles, Ben Jackson, Shareef Jalloq, Krzysztof
Jankowski, HyungKi Jeong, Iztok Jeras, James Johnson, Christophe Joly, Franck Jullien, James Jung, Mike
Kagen, Arthur Kahlich, Kaalia Kahn, Guy-Armand Kamendje, Vasu Kandadi, Kanad Kanhere, Patricio
Kaplan, Pieter Kapsenberg, Ralf Karge, Dan Katz, Sol Katzman, Ian Kennedy, Jonathan Kimmitt, Olof
Kindgren, Kevin Kiningham, Dan Kirkham, Sobhan Klnv, Gernot Koch, Soon Koh, Nathan Kohagen, Steve
Kolecki, Brett Koonce, Will Korteland, Wojciech Koszek, Varun Koyyalagunta, David Kravitz, Roland
Kruse, Sergey Kvachonok, Charles Eric LaForest, Ed Lander, Steve Lang, Stephane Laurent, Walter Lavino,
Christian Leber, Larry Lee, Igor Lesik, John Li, Eivind Liland, Yu Sheng Lin, Charlie Lind, Andrew Ling,
Jiuyang Liu, Paul Liu, Derek Lockhart, Jake Longo, Geza Lore, Arthur Low, Stefan Ludwig, Dan Lussier,
Fred Ma, Duraid Madina, A�e Mao, Julien Margetts, Mark Marshall, Alfonso Martinez, Yves Mathieu,
Patrick Maupin, Jason McMullan, Elliot Mednick, Wim Michiels, Miodrag Milanovic, Wai Sum Mong, Pe-
ter Monsson, Sean Moore, Dennis Muhlestein, John Murphy, Matt Myers, Nathan Myers, Richard Myers,
Dimitris Nalbantis, Peter Nelson, Bob Newgard, Cong Van Nguyen, Paul Nitza, Yossi Nivin, Pete Nixon,
Lisa Noack, Mark Nodine, Kuba Ober, Andreas Olofsson, Aleksander Osman, James Pallister, Vassilis Pa-
paefstathiou, Brad Parker, Dan Petrisko, Maciej Piechotka, David Pierce, Dominic Plunkett, David Poole,
Mike Popoloski, Roman Popov, Rich Porter, Niranjan Prabhu, Usha Priyadharshini, Mark Jackson Pulver,
Prateek Puri, Marshal Qiao, Danilo Ramos, Chris Randall, Anton Rapp, Josh Redford, Odd Magne Reitan,
Frederic Requin, Frederick Requin, Dustin Richmond, Alberto Del Rio, Eric Rippey, Oleg Rodionov, Ludwig
Rogiers, Paul Rolfe, Arjen Roodselaar, Tobias Rosenkranz, Huang Rui, Jan Egil Ruud, Denis Rystsov, John
Sanguinetti, Galen Seitz, Salman Sheikh, Hao Shi, Mike Shinkarovsky, Rafael Shirakawa, Je�rey Short, An-
derson Ignacio Da Silva, Rodney Sinclair, Steven Slatter, Brian Small, Garrett Smith, Tim Snyder, Maciej
Sobkowski, Stan Sokorac, Alex Solomatnikov, Wei Song, Art Stamness, David Stanford, John Stevenson,
Pete Stevenson, Patrick Stewart, Rob Stoddard, Todd Strader, John Stroebel, Sven Stucki, Howard Su,
Emerson Suguimoto, Gene Sullivan, Qingyao Sun, Renga Sundararajan, Rupert Swarbrick, Yutetsu Takat-
sukasa, Peter Tengstrand, Wesley Terpstra, Rui Terra, Stefan Thiede, Gary Thomas, Ian Thompson, Kevin
Thompson, Mike Thyer, Hans Tichelaar, Viktor Tomov, Steve Tong, Michael Tresidder, Neil Turton, Srini
Vemuri, Yuri Victorovich, Bogdan Vukobratovic, Holger Waechtler, Philipp Wagner, Stefan Wallentowitz,
Shawn Wang, Paul Wasson, Greg Waters, Thomas Watts, Eugene Weber, David Welch, Thomas J Whatson,
Marco Widmer, Leon Wildman, Daniel Wilkerson, Gerald Williams, Trevor Williams, Jan Van Winkel, Je�
Winston, Joshua Wise, Cli�ord Wolf, Tobias Wolfel, Johan Wouters, Junyi Xi, Ding Xiaoliang, Jie Xu,
Mandy Xu, Takatsukasa Y, Luke Yang, and Amir Yazdanbakhsh.

Thanks to them, and all those we've missed including above, or wished to remain anonymous.

31 DISTRIBUTION

The latest version is available from https://verilator.org.

Copyright 2003-2021 by Wilson Snyder. This program is free software; you can redistribute it and/or modify
the Verilator internals under the terms of either the GNU Lesser General Public License Version 3 or the
Perl Artistic License Version 2.0.

82

Verilator 4.108 32 SEE ALSO

All Verilog and C++/SystemC code quoted within this documentation �le are released as Creative Commons
Public Domain (CC0). Many example �les and test �les are likewise released under CC0 into e�ectively the
Public Domain as described in the �les themselves.

32 SEE ALSO

verilator_coverage, verilator_gantt, verilator_profcfunc, make,

verilator --help which is the source for this document,

and docs/internals.adoc in the distribution.

83

	1 NAME
	2 SYNOPSIS
	3 DESCRIPTION
	4 ARGUMENT SUMMARY
	5 VERILATION ARGUMENTS
	6 SIMULATION RUNTIME ARGUMENTS
	7 EXAMPLE C++ EXECUTION
	8 EXAMPLE SYSTEMC EXECUTION
	9 EVALUATION LOOP
	10 BENCHMARKING & OPTIMIZATION
	11 FILES
	12 ENVIRONMENT
	13 CONNECTING TO C++
	14 CONNECTING TO SYSTEMC
	15 DIRECT PROGRAMMING INTERFACE (DPI)
	16 VERIFICATION PROCEDURAL INTERFACE (VPI)
	17 CROSS COMPILATION
	18 HIERARCHICAL VERILATION
	19 MULTITHREADING
	20 CONFIGURATION FILES
	21 LANGUAGE STANDARD SUPPORT
	22 LANGUAGE EXTENSIONS
	23 LANGUAGE LIMITATIONS
	24 ERRORS AND WARNINGS
	25 DEPRECATIONS
	26 FAQ/FREQUENTLY ASKED QUESTIONS
	27 BUGS
	28 HISTORY
	29 AUTHORS
	30 CONTRIBUTORS
	31 DISTRIBUTION
	32 SEE ALSO

