

MEASURING ACTIVE POWER USING PT PX
A USER PERSPECTIVE

Duane E. Galbi (duane.e.galbi@intel.com)

Karthik Kannan (karthik.k.kannan@intel.com)

Intel Massachusetts, Inc.

Hudson, MA

ABSTRACT

The authors will review the use of PrimeTime PX (PT PX) to measure active power. With PT
PX, one will always get a power value. However, one cannot always rely on this initial power
measurement. We will review the conditions under which the generated power numbers are
inaccurate and provide strategies to avoid these pitfalls. We will describe a forced gate based
flow using VCS and PT PX which enables one to accurately measure power and effectively
debug the power measurement results, and describe how this flow can be extended to
accurately measure glitch power.

SNUG Boston 2010 2 Measuring Active Power Using PT PX: A User Perspective

TABLE OF CONTENTS

Introduction – Active Power Vs. Leakage Power Measurement Methodology………...3

Search For A Forced-Gate Active Power Measurement Flow…………………………..4

Performing Zero Gate Delay Power (Non-Glitch Power) Measurements……...............7

Performing Full Gate Delay Power (Glitch Power) Measurements……………………..9

Physical Vs. Simulation Glitch...10

Summary...12

Acknowledgments…………………………………………………………………………12

Bibliography/References…..……………………………………………………………...12

SNUG Boston 2010 3 Measuring Active Power Using PT PX: A User Perspective

INTRODUCTION – ACTIVE POWER VS. LEAKAGE POWER MEASUREMENT METHODOLOGY
Static leakage estimation is a fairly well solved problem with easy to use solutions. The full
Synopsys tool suite supports static state probability propagation [1] for calculating gate-level
leakage. Simple summations of the total device width or the total device width attached to
power and ground supplies can be used to calculate reasonable leakage approximations. Full
state dependent leakage is typically an output of most active gate-level power measurement
flows [1]. Leakage power is not nearly as pattern dependent as active power. Hence, any
method which gives a consistent estimation of whether an inverter is driving high or low can do
a reasonable job at estimating leakage. Fine-grained state-dependent power gating would
complicate leakage power determination, but the authors have yet to see much of this.

However, the full calculation of active gate-level power is not nearly as mature. The accurate
calculation of active power requires determining an accurate activity at each gate-level node,
and this is much more pattern dependent than leakage calculations. The three most common
methods we have seen to determine the activity at each node are: static propagation of activity
factor, full gate-level simulations, and forced-gate gate-level simulations. PrimeTime PX (PT
PX) can be used to support all three of these methods.

PT PX (as well as the rest of the Synopsys tool set) supports static propagation of the activity
factor and it is a fairly straightforward extension of the static state probability propagation used in
leakage estimation. One creates a mapping between RTL nodes and gate-level nodes and
forces the probability on the mapped gate-level nodes based on the results of an RTL
simulation. However, due to the pattern dependence of active power, one needs to map the
state of enough nodes such that the probability propagation from these nodes validly covers all
other nodes. Mapping and forcing just the sequential nodes, EBB outputs, and top level inputs
are typically not sufficient. Adding other mapping points, such as interfaces between modules,
can increase the accuracy of static propagation, but the authors have yet to find a method to
determine a set of sufficient additional mapping points.

Full gate-level simulation (GLS) is an obvious choice to get the activity at each gate-level node.
However, full GLS runs are notoriously difficult to get running correctly, and this approach was
not considered viable for the large number of tests we hope to run.

A forced-gate GLS supplies the same power estimation accuracy as a full GLS without the need
to get the full GLS working. In this approach, a RTL-to-gate-level mapping of external interface
signals, state nodes, and embedded black box (EBB) outputs is created, and the cycle-by-cycle
values of these signals are collected during an RTL simulation. This collection of nodes is
sufficient to define the state of the non-EBB part of the gate-level logic at any point in time. A
GLS is then run where the states of these mapped signals are forced to the value collected
during the RTL simulation, and the simulator calculates the non-forced nodes based on the
value of the forced nodes. In reality, one does not need to have a complete mapping of all the
gate-level states to an equivalent RTL node, because the GLS simulation can calculate the
value of state-nodes base on the rest of the mapped values. The result of the GLS is the
activity of all the gate-level nodes. This activity can then be used by a power analysis tool to
accurately calculate active power.

We chose to implement a power analysis strategy based upon the forced-gate GLS
methodology using VCS B-2008.12 and PT PX C-2009.06-SP1. We will review why the
existing forced-gate methodologies were not sufficient, what could be done to improve them,
and the issues we had with both VCS and PT PX while implementing this methodology.

SNUG Boston 2010 4 Measuring Active Power Using PT PX: A User Perspective

SEARCH FOR A FORCED-GATE ACTIVE POWER MEASUREMENT FLOW
The choice of a forced-gate flow for active power measurement seemed obvious; however,
finding an appropriate flow was not as easy. The flow needs to address the three main steps of
the forced-gate methodology: creating a state mapping between RTL simulation VCD and gate-
level netlist, running a GLS forcing the mapped nodes, and then using the GLS results to
calculate active power. The PT PX cycle-accurate peak power (CAPP) flow [2] seemed to
provide the ultimate forced-gate power flow, and promised to elegantly solve the three main
steps of the forced-gate process.

In order to create the state mapping between the RTL simulation VCD and the gate-level netlist,
the Design Compiler/Design Compiler Topographical (DC/DCT) synthesis tool has the ability to
keep track of all the name remapping that happens to the RTL during synthesis, and writes out
a SAIF map file which records these changes. The SAIF map file output from DC/DCT can
then be read into PT PX to allow PT PX to correlate RTL VCD names to their gate-level
equivalent names. This problem gets complicated by the fact that the simulation and synthesis
models for sequential elements are different in our database. The RTL simulation cannot be run
with the synthesis models because the synthesis models use Intel-specific width-based array
instantiation enhancements which are recognized by DC/DCT, but not by VCS.

With the SAIF map file, PT PX can then read in a RTL VCD simulation file, map the appropriate
nodes to the appropriate gate-level states, and logically propagate the RTL mapped nodes to
the unmapped nodes. This feature is called “cycle-accurate peak power” or CAPP flow. PT PX
logically propagates the nodes by, in essence, running an internal GLS starting from the forced
nodes. PT PX then internally captures this simulation data, eliminating any potential data
volume problems inherent in using a large VCD from a GLS, and calculates the appropriate
instantaneous power and average power.

Unfortunately, the promise of the PT PX CAPP flow was clouded with mapping issues.
Debugging mapping issues was very slow, and there were no good ways to determine which
RTL nodes were mapped to which gate-level nodes. STARs were filed against PT PX and
Power Compiler for mapping issues [3, 4, 5, 6, 7], and we were not confident in using the CAPP
flow as we expanded to rest of our design. Although it seemed as though the logic propagation
simulation and subsequent power calculation worked as expected, we stopped work on this PT
PX flow because we could not validate that the mapping was working appropriately.

Synopsys has since then updated the CAPP flow to address concerns related to RTL-to-gate-
name mapping, especially in the D-2009.12 version, where the name mapping file is given
preference over automatic name mapping from the SAIF or VCD file. Synopsys has also
enhanced the reporting of the name mapping process to specify which design object in the RTL
switching activity file (VCD or SAIF) is mapped to which design object in the gate-level design
[8]. We plan to reevaluate the CAPP flow in the future. Eventually we expect the CAPP flow to
be working appropriately, but for the near term we still expect the added ability to debug a non-
integrated flow to outweigh the advantages of the integrated CAPP flow.

In the end, we decided to create our own forced-gate simulation flow using VCS. The steps are:

1a. Run formal comparison, or equivalence checking, to generate a RTL-to-gate mapping file
consisting of primary inputs, sequential cell outputs, and EBB outputs

1b. Translate the RTL-to-gate mapping into RTL-simulation-VCD-names-to-gate-names
mapping

2a. Take the mapping file and RTL VCD and generate the appropriate inputs to control the VCS
GLS (through a custom Verilog Procedural Interface, or VPI, routine) [20,21]

2b. Run VCS and generate gate-level VCD file

2c. Post-process VCD file (bit-blast VCD file), and run vcd2saif to generate a SAIF file from the
VCD

3. Run PT PX with the gate-level SAIF file to determine active power

SNUG Boston 2010 5 Measuring Active Power Using PT PX: A User Perspective

In order to ease the generation of the RTL VCD name to gate name mapping (Step 1b), the
library simulation models were updated to have a consistent naming convention for the
appropriate net or pin within the standard cell model to force. This is not really required, but it
did provide a simple solution for the case of sequential cells with an inverted output as well as
sequential cells with both an inverted and a non-inverted output. Always forcing a non-inverted
internal node of the sequential cell provided a simple way to translate from the internal node
supplied by the formal comparison map file to the appropriate node to force during GLS. In
addition, the use of a VCS VPI routine to force the nodes simplified this mapping because the
VPI routine was designed to be able to force pins, nets, and the state of user defined primitives
(UDPs).

One obvious characteristic of our flow is that we annotate switching activity with a SAIF file
instead of a VCD or FSDB file (Step 3). A SAIF, or Switching Activity Interchange Format, file
describes switching activity statistics instead of the actual toggle activity. We have found that
there are multiple bugs in the way PT PX processes a VCD file which can lead to dropped
toggles. In one case, when using unit delay models, enough toggles were dropped that we saw
about a six percentage difference in total active power between activity annotation with a VCD
file versus annotation with a SAIF file. After a detailed debug, we concluded that the power
value derived using a SAIF file was correct. It was possible to reduce the issue to a small test
case which we have submitted to Synopsys. We have filed multiple bug reports and STARs on
the issues we saw. In general, we see ordering and bus related issues leading to dropped
toggles, when using VCD or FSDB files to annotate activity into PT PX. We will discuss specific
cases in subsequent sections of the paper.

Figure 1 is a flow chart of the forced-gate flow which will be described in more detail in the
sections on using the flow to measure power from zero-delay simulation VCD (i.e. non-glitch)
and measuring glitch power with full SDF backannotation.

Key Learnings:

1) PT PX cycle accurate peak power (CAPP) flow, although it holds great promise, was not
ready for production use due to name mapping issues.

2) In order to allow easy adaptation to a wider variety of requirements, the forced-gate flow
should be broken into three distinct steps: create a mapping between RTL VCD and gate-
level netlist; given the mapping file, RTL VCD, and the gate-level netlist, run the simulation;
given the gate-level VCD, netlist, SPEF, and library collateral, calculate the active power

3) Annotating gate-level activity in PT PX with a SAIF file is a more reliable way than using an
FSDB or a VCD file.

SNUG Boston 2010 6 Measuring Active Power Using PT PX: A User Perspective

Figure 1: VPI Forced GLS Flow

(Dashed lines depict additional steps for glitch power calculation)

RTL
Simulation

RTL VCD

VPI Force File
Generator

RTL-to-Gate
Map File

VPI Force File

Verilog GLS
Libraries

Gate-Level
Verilog Netlist

Verilog
Testbench

SDF File

VCS Compilation and
Simulation

SDF Post-
Processor

SDF with
PATHPULSE

Gate-level VCD
RTL vs. Gate

VCD Compare

VCD Post-Processor and
VCD-to-SAIF Converter

Gate-Level SAIF
for PT PX

Synopsys
Libraries

Gate-level
Parasitics

PrimeTime PX (PT PX)
Gate-Level Power Analysis

Comparison
Reports

Power
Reports

VPI Code to
Force Nodes

Formal
Comparison

Step 1a

Step 1b

Step 2a

Step 2b
Step 3

Translate RTL-to-
gate mapping to
RTL VCD names

SNUG Boston 2010 7 Measuring Active Power Using PT PX: A User Perspective

PERFORMING ZERO GATE DELAY POWER (NON-GLITCH POWER) MEASUREMENTS
We started with the power measurement flow using zero gate delay library models. Because it
does not model the cell or interconnect delays, it is simpler to simulate, but it still exercises all
the same flow steps as the full glitch power flow. The RTL inputs, the RTL VCD to gate-level
mapping, and the PT PX measurement flow are exactly the same between these two simulation
modes. In the zero gate delay model, we force the output pin of each sequential element;
whereas, in the full gate delay model we force a node corresponding to the input of the
sequential. The ramifications of this distinction will be described later in the full gate delay
simulation section of this paper.

One issue that arises when comparing RTL simulation and GLS runs is that X's are often not
handled the same way in RTL as they are in GLS runs [9]. Our solution to this problem is to
eliminate, wherever possible, X's from both the RTL simulation and the GLS. VCS provides
options (+vcs+initmem and +vcs+initreg) to initialize the state of registers (SystemVerilog
types are treated like registers) and memories. However, these routines do not initialize the
state of UDPs. This issue was filed with Synopsys [10]. As a workaround, a VPI routine was
created which can initialize the state of all the elements in the simulation. This VPI routine is
invoked at the beginning of the RTL simulation to initialize the RTL model. With this method, the
RTL VCD used to determine the value of the forced-gate state nodes contains few to no X
states.

A formal comparison step was used to create the mapping between the simulation RTL and the
gate-level netlist. In order to allow flexibility in which formal comparison tool could be used, we
could not depend on the formal comparison hints, an SVF file, which DC/DCT can write out.
Instead we added automation to create an appropriate RTL to gate level seed map file.

One key technique for this mapping automation was to read the RTL into DC/DCT and assign
the initial unmapped names of the sequential elements to a user attribute. A change_names
step was then performed, and then this existing user attribute could be used to write out a file
giving a direct mapping from the original to the changed sequential element names. Another
complication to the mapping was the fact that the simulation modeling and implementation
modeling of certain elements was substantially different. Our formal verification is from the
simulation model to the gate-level output of the implementation model, so the mapping created
needs to understand these different modeling methods. However, by far, the most complicated
mapping issues were created by nested RTL generate statements and nested for loops. The
sequential name created often gives an indication of the variables used in the for loop or
generate steps, but they do not give an indication of the order of these indexes. If a coding
convention was applied in which the name of the index variable indicated the order of the loop
nesting relative to the order of the indexes in the variable name, this would have greatly
simplified the initial seed mapping generation. A Perl program was created which reads the
original-to-changed-names mapping file created, RTL nodes, and gate nodes needing to be
mapped, and attempts multiple heuristics in order to create a seed mapping between the RTL
and gate nodes. The mapping does not need to be complete; because if a reasonable seed
mapping is supplied, then the internal mapping algorithms of the formal comparison tools can
do a good job at completing the rest of the mappings.

After the appropriate mapping is established, the RTL VCD file then needs to be read to provide
the appropriate states to force onto the gate-level netlist. We looked at three different ways to
do this:

1. Compile the force values directly into the Verilog code using a custom Verilog test bench

2. Use Unified Command Line Interface (UCLI) forces

3. Use a VPI routine to force signals

The custom Verilog test bench ran very fast, but for large test benches it dramatically slowed
down VCS compile times and required a VCS model rebuild every time the force inputs
changed. If one creates a UCLI force file where each node is forced using a "force <node-

SNUG Boston 2010 8 Measuring Active Power Using PT PX: A User Perspective

name> <value>" statement, the UCLI run time becomes very long due to the fact that VCS
looks up the <node-name> for each force statement. A procedure written to use the VPI allows
the results of this lookup to be cached and used for all subsequent force statements. As
shown in Table 1 below, this allows the VPI approach to complete in nearly the same amount of
time as a regular GLS. One can speed up the UCLI simulation time by forcing multiple values
for each UCLI force statement. An example of this would be "force {clk} 0@10, 1@20,
0@30, 1@40". However, we decided to stick with a VPI routine due to the flexibility it provides in
picking the node or pin to force and the fact that it allows for a more compact force file.

 Regular GLS
Run Time

UCLI Forced GLS
Run Time

VPI Forced GLS
Run Time

500K instance cluster 23 min Crashed after 24 hours 25 min

Table 1: Comparing Different GLS Run Times

The node trace output of the forced-gate GLS run is then read into PT PX to supply the gate-
level node activity. We were originally capturing the trace output into a FSDB file and feeding
this FSDB file directly into PT PX. However, this caused subtle issues. PT PX really depends
on the ordering of the events in the trace output file to determine which input event in a gate
caused the output to change. This allows PT PX to capture arc-dependent power even in a
zero gate delay simulation. The order of events in a VCS VCD file corresponds to the order of
events in the event-driven simulation, so the inputs which cause the output event to happen are
listed before the output event. PT PX depends upon this ordering. Unfortunately, FSDB files do
not preserve this ordering of events. Synopsys has talked to SpringSoft (formerly Novas) about
this issue. SpringSoft has the capability to add sequence numbers to preserve the ordering in
FSDB files, but its FSDB-to-VCD file converter did not consider the sequence numbers.
SpringSoft has enhanced its FSDB-to-VCD converter to consider the sequence numbers in the
FSDB file beginning with its early 2010 version. Nonetheless, we have standardized on using
VCS generated VCD files as the source of PT PX gate-level activity input. It should be noted
that the use of sequence numbers causes the FSDB file size to increase by as much as 10%.

In general, if PT PX gets confused about which input event causes the output to transition, it
calculates the power of the output transition to be the average of all the potential input
combinations assuming a ZERO slope on the inputs [11]. This means the library needs to give
reasonable power values for the zero input slope case. One sanity check for a library is to set
all the node slopes to zero and measure the power delta between the zero slope and the actual
slope conditions. Synopsys has agreed that a zero slope is not a good choice, and an ESTAR
[12] has been filed to switch this measurement condition to the average slope of all the
controlling inputs.

Other issues encountered in, and filed against PT PX, involved processing of bussed nets and
bussed EBB pins where non-existent glitching was produced after parsing the VCD file [13].
Another related issue observed with bussed nets and pins was that PT PX reported incorrect
toggle counts for nets connected to bussed inputs of EBBs [14]. In general, we found that PT
PX can get confused when there are multiple changes within a single time step and the bus
values changed in such a manner that certain bits of the bus have multiple transitions during the
time step. Our workaround for this issue is to bit-blast the VCD file, and dump out a value
change for each bus bit only when the bit actually changes value. The vcdpost Synopsys utility
with the +unique option can be used to accomplish this manipulation.

We have also noticed a case where even if the switching activity was annotated through PT PX
set_switching_activity commands (instead of reading in a SAIF or VCD file), PT PX reports
the wrong cell internal power for two identical cells with same input transition time and output
load, but one cell has a bussed net feeding in and the other has a non-bussed net feeding in
[15].

SNUG Boston 2010 9 Measuring Active Power Using PT PX: A User Perspective

Finally, we converged on using a SAIF file (generated from the post-processed VCD file) in PT
PX in order to get our power measurements and avoid any remaining false toggles in the VCD
file. We lose the capability to observe peak power by not using a VCD file, but for average
power measurements, using a SAIF file seems to be safer than using a VCD file.

One other issue involved the behavior of report_power omitting cells with negative internal
power but positive total power from the default power report [16]. This issue was fixed in the
next service pack release of PT PX (C-2009.06-SP3).

In our Synopsys libraries, output pin capacitances are specified for standard cells. PrimeTime
includes the output leaf pin capacitance in the output load, when performing table lookups in the
libraries to determine cell delay and output transition times. But PT PX omits this output leaf pin
capacitance for both switching power and cell internal power calculations. This causes the
active power correlation of PT PX to our internal transistor-level power analysis tool to be off by
a reasonable amount. We worked around this issue by adding the output pin capacitances to
the nets connected to these output pins. This workaround is not perfect since it affects the node
slopes, which in turn affects the power calculation. The appropriate fix is to include this output
leaf pin capacitance in the calculation of the power tables.

During the course of implementing our power analysis flow, we considered switching to PT PX
D-2009.12-SP1 to take advantage of some of the bug fixes and new features. However, an
issue with the VCD and SAIF file reader, which reported twice as many cells in the log after
reading the activity file, caused us to stick with the C-2009.06-SP1 version [17]. Synopsys has
scheduled the fix for this issue for its D-2010.06-SP2 PT PX release.

Key Learnings:

1) Need to use VCS generated VCD files rather than FSDB files as the starting point for PT
PX gate-level activity inputs

2) Need to validate that PT PX library gives reasonable results for zero input slopes, as PT PX
assumes zero input slopes when it cannot determine the input event causing an output
transition

3) Attempt to get the RTL team to adopt a naming convention for the indexes of nested
generate statements and for loops, which indicates the order of the nesting relative to
the order of the indexes in the variable names

4) The use of VPI routines allows a forced-gate simulation to run at nearly same performance
as a regular full GLS

5) Removing X’s from the gate-level power simulation by initialization of the gate-level model
eliminates potential RTL-to-gate simulation mismatches due to the propagation of X values

PERFORMING FULL GATE DELAY POWER (GLITCH POWER) MEASUREMENTS
Measuring the active power due to glitches, those transmitted from the input of a cell to its
output (Synopsys calls these transport glitches) and those just at the input of a cell (Synopsys
calls these inertial glitches), require the use of toggle data generated from an SDF file-
backannotated forced-gate VCS simulation. The glitch power cannot be measured directly. In
order to determine the actual power contribution of glitches, the active power from a PT PX run
utilizing a VCD file from ideal (zero delay) simulation should be subtracted from the active power
from a PT PX run utilizing a VCD file from a SDF backannotated forced-gate simulation. The
difference between these two runs is the glitch power.

The SDF files used by VCS in forced-gate simulations are generated from PrimeTime runs with
post-route data (netlist and SPEF parasitics) and timing constraints.

The Verilog simulation libraries used for the force-gate simulation were modified so that each
sequential cell included a fixed internal net name which could be forced to set a value at the

SNUG Boston 2010 10 Measuring Active Power Using PT PX: A User Perspective

input of the sequential element (we called this net "force_d"). The cell was also modified such
that an internal net connected to the clock input of the sequential element was also given a fixed
name (we called this net "force_c"). Internally, the clock input net was inverted appropriately
such that force_c was always defined to be active high even if the sequential was an active
low sequential cell, and was zero delay buffered from the cell clock pin, such that the force_c
net could be toggled without changing the value of the cell clock pin. Modifying the cell
description this way allowed a cell value to be forced in the same manner independent of the
actual sequential cell type. Note these internal nets are not included in the Synopsys .lib files
used for power analysis, so the activities on these nets are not counted by PT PX during power
analysis.

In SDF-backannotated, forced-gate VCS simulations, our method of forcing sequential nodes
also uses the same VPI routine as the zero delay simulation. This VPI routine has the ability to
assign internal nodes within leaf cells (essentially the Verilog library descriptions) a new value
through a “force” (which would retain the forced value until it was removed or another “force”
was applied), or through a “deposit” (which would retain the value deposited until a new value,
be it through another “deposit”, “force” or through simulation was set). The VPI routine also has
options to toggle a net of a sequential cell so that values on the data inputs could be loaded into
a cell at any specified time by toggling a clock net. This approach of toggling the clock net was
required to initialize the sequential UDP that was used to hold the state of a sequential element.

The initialization strategy for the simulation was to force the appropriate value on the "force_d"
net of the sequential and to toggle the sequential "force_c" net. This loads all the sequential
with their initial value. Before every ensuing clock edge, the "force_d" forces are updated for
any sequential which has changed value, and the clock edge propagates these values through
the sequential cell. By virtue of including the SDF file, the clock-to-Q delays for sequential cells
can be observed. Another advantage of forcing the sequential cell inputs instead of outputs is
that the inputs can be forced before the clock network starts to propagate the new clock edge
and well before this clock propagates through the clock network and arrives at the sequential
cells.

Since the focus is on obtaining a VCD file for power, toggling of notifier signals for timing
violations during the forced-gate simulation is turned off through the +no_notifier switch.
Otherwise, there would be X values on the outputs of sequential cells that violate timing
constraints.

PHYSICAL VS. SIMULATION GLITCH

When one runs a gate-level simulation with backannotated delays, small glitch pulses can be
created due to the fact that signals now do not all change at the same time. The VCS simulator
is able to propagate glitches throughout the gate level logic without regard to the width of these
glitches. However, in a physical inverter this is not the case. In a SPICE simulation, delay is
measured from the input at 50% to the output at 50%, and signals have a finite rise/fall transition
time. A delay measurement assumes the input continues its rise/fall during the switching event
as then stays at the appropriate power/ground rail. If the input node switches again (i.e.
glitches) before the output has settled at its final power/ground rail, the inverter output switching
will be affected. If the glitch is small enough, the output will never completely transition to the
appropriate power/ground rail and the glitch will not propagate. Based on various SPICE
simulations, we have come up with the approximation that a glitch will not physically propagate
through a standard cell unless that glitch is 1.5 times the value of a simple inverter delay.
Hence, to give a good approximation of the real “glitch” generated by a gate-level
implementation, we need to remove the small non-physical glitch pulses from the VCS
simulation.

Three strategies were explored to filter glitches from VCS simulations:

1. VCS percentage delay-based filtering through pulse controls,

SNUG Boston 2010 11 Measuring Active Power Using PT PX: A User Perspective

2. Pulse filtering by post-processing the VCD to remove signal pulses of less than the given
width, and

3. Pulse filtering using PATHPULSE statements in SDF file

To use VCS percentage delay-based filtering, transport delays along with pulse control switches
(+pulse_r and +pulse_e switches) were employed. This filtering strategy was easy to apply as
it only required users to specify VCS options to enable it. However, this strategy did not work
appropriately as it did not support absolute delay values. In the physical circuit, pulse filtering is
a function of the delay of each inversion stage of the circuit, not of the full circuit delay. For
multiple stage cells (such as buffers), this VCS option incorrectly sets the filtering delay based
on the whole delay of the cell rather than just the inversion delay in the cell. Also, in some
cases, we want to filter out glitches that are greater than the delay of the cells (for example 1.5
times the delay of a simple inverter), and this method did not support filtering of delays greater
than the cell delay.

The use of the PATHPULSE statements in Verilog and SDF files allow the specification, on a per
cell instance basis, of rejection and error limits, which are the same as the pulse control limits
used in VCS, but in this case, absolute values of rejection and error limits can also be specified.
For this approach, one has to make sure that token PATHPULSE statements are included in the
Verilog libraries, and the SDF file must be post-processed to include PATHPULSE statements for
each leaf cell. For this method of filtering, we used a rejection limit and an error limit of
approximately 1.5 times the standard delay we saw for a single inversion cell.

The use of PATHPULSE statements enabled the use of absolute delay values, but the PATHPULSE
statement cannot be used to filter delays greater than the intrinsic cell delay. Hence, the original
issue of not being able to filter delays greater than the delay of the standard cell is still present.
Our solution to this problem was to write a utility, we call filter_vcd [20], which is used to
post-process VCD files. This utility allows one to post-process a VCD file and remove any logic
pulse less than the specified filter delay and write out the resulting new VCD file.

Our final solution was an amalgam of the PATHPULSE and filter_vcd [20] methods. The
VCD file was obtained from the forced-gate SDF simulation with a fixed PATHPULSE value of 1.5
times the delay of a single inversion cell. For cells where this value was greater than the cell
delay, the PATHPULSE value defaulted to the delay of the cell. We then post-processed the VCD
using our filter_vcd [20] utility to remove the glitches that could not be filtered during the
simulation using the PATHPULSE property of the cell due to the fact than the glitches were
greater than the delay of the associated cell. We saw this problem mainly with simple single
inversion cells. However, most of the glitch filtering was performed by the PATHPULSE statement
during the VCS simulation. This is desirable because we want to reduce the probability of two
glitches being logically combined into one longer single glitch which would not be removed by a
VCD post-processing filter step.

Through our glitch filtering experiments, we came to the conclusions that for our design-under-
test and power test patterns of interest, the glitch power observed was 5% of the total active
power.

One issue we found was a subtle bug in VCS where SDF backannotated delays were not being
applied to certain cells due to calling the SDF backannotation Verilog task and the VPI to force
node values at time t=0. We worked around this issue by delaying the SDF backannotation to a
later point in the simulation (t=5 for example). We filed a STAR against Synopsys for this issue
[18].

Another issue we found was an issue with PT PX and bussed ports. In all cases, the VCD file
was bit-blasted using Synopsys’ vcdpost utility before being used in PT PX. This took care of
an issue in PT PX that propagated incorrect toggles for bussed nets when different delays are
seen on the bussed nets and the pins to which these nets connected. PT PX does not expect
delays on pins due to net SDF delays (when processing a VCD file from an SDF simulation).
This issue has been reported to Synopsys.

SNUG Boston 2010 12 Measuring Active Power Using PT PX: A User Perspective

Finally, an issue with PT PX losing toggles for the VCD file input was observed during a power
analysis run of activity generated from a unit-delay GLS run (similar to an SDF-backannotated
GLS run). This issue has been reproduced in a small testcase, and was recently submitted to
Synopsys [19].

Key Learnings:

1) A full SDF simulation in a forced-gate flow is possible and gives good glitch power
measurement. The best approach is to force the inputs of sequential cells, so the forced-
gate flow mimics a conventional SDF backannotated simulation where clock signals
naturally clock the data out of sequential elements (as opposed to just forcing the outputs of
the sequential cells).

2) Real glitch power is approximately 5% of total active power for the given cluster and pattern

3) One needs to delay SDF backannotation in the forced-gate simulation so that SDF
backannotation and the VPI to force nodes are not called at the same time. This prevents
valid non-zero SDF delays from being converted to zero delays

4) It is best to use vcdpost to bit-blast busses so that correct toggles for bussed nets are
propagated in PT PX. A fix for this issue is targeted for PT PX D-2010.06-SP2.

SUMMARY
In the paper we described a method to analyze power using a force-gate simulation of a gate-
level netlist with full SDF back annotation. This method showed that glitch power is under 5% of
the total active power.

Multiple STARs were filed against Synopsys for PT PX during the process of getting our forced-
gate simulation flow working. When these STARs get resolved, the implementation of a forced-
gate flow should be substantially easier. When running PT PX, SAIF files should be used
instead of VCD or FSDB files.

The use of VCS VPI interface routines is a very effective way to speed up the forced-gate
simulation flow, and any new force-gate flow should take advantage of them. The authors also
proposed a partitioning of the forced-gate power estimation flow which would allow the pieces of
the estimation flow to be more easily adapted to different technologies and vendors.

ACKNOWLEDGMENTS
The authors would like to acknowledge the work of Nathaniel Hazelton in writing the initial Perl
scripts necessary to get the forced gate flow described working. The authors would like to
acknowledge the work of the design team in implementing the design which they used to
measure power. In addition they would like to thank Richard Shin for generating the RTL VCD
files, which were the primary inputs for our power measurement strategy. Finally, the authors
would like to thank John Geremia and Chris Spear of Synopsys for providing assistance in
addressing questions and issues related to PT PX and VCS.

BIBLIOGRAPHY/REFERENCES
[1] PT PX – http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx

[2] PT PX Cycle-Accurate Peak Power Flow – https://solvnet.synopsys.com/dow_retrieve/D-
2009.12/ptpx/ptpx_6.html#index004

[3] STAR 9000309751 (PT PX) – RTL VCD with 2-D array cannot be annotated; fixed in PT PX
C-2009.06.

http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx�
https://solvnet.synopsys.com/dow_retrieve/D-2009.12/ptpx/ptpx_6.html#index004�
https://solvnet.synopsys.com/dow_retrieve/D-2009.12/ptpx/ptpx_6.html#index004�

SNUG Boston 2010 13 Measuring Active Power Using PT PX: A User Perspective

[4] STAR 9000264846 (Power Compiler) – Bogus output of saif_map -report on missing
nodes; fixed in Power Compiler C-2009.06.

[5] STAR 9000319040 (Power Compiler) – saif_map creates unreadable output file; fixed in
Power Compiler C-2009.06-SP1.

[6] ESTAR 9000316869 (PT PX and Power Compiler) – add -invert flag to
set_rtl_to_gate_name command; fixed in PT PX C-2009.06 and Power Compiler D-2010.03.

[7] ESTAR 9000257558 (PT PX and Power Compiler) – saif_map to generate -invert flag
when writing out SAIF map file; fixed in PT PX C-2009.06 and Power Compiler D-2010.03
(Related to [6]).

[8] ESTAR 9000302184 (PT PX) – Enhance switching annotation reporting; fixed in PT PX
2010.06.

[9] Galbi, Duane, et al, “RTL X’s – A Treasure Trove of Trouble”, SNUG Boston 2002.

[10] Case ID Unknown (VCS) – Enhance +vcs+initreg option to initialize UDPs; fixed
expected in September patch release of VCS 2009.06 / 2009.12 / 2010.06.

[11] STAR 9000352325 (PT PX) – 0ns input transition time used for power for unmatched input
events; Open issue.

[12] ESTAR 9000354389 (PT PX) – Identify related input transitions in zero-delay VCD which
lists outputs first; Open issue (related to [11]).

[13] STAR 9000361500 (PT PX) – Non-existent glitching created from VCD parser and
processing of bussed port; fixed in PT PX D-2010.06.

[14] STAR 9000356190 (PT PX) – Toggle counts incorrect if VCD file includes inputs to black
box macro; fixed in PT PX D-2010.06 (related to [13]).

[15] STAR 9000350866 (PT PX) – Different internal power for identical cells (due to bussed port
or driving cell); Open issue (related to [13]).

[16] STAR 9000338970 (PT PX) – report_power incorrectly omits cells with negative cell
internal power, but positive total power from default power reports; fixed in PT PX C-2009.06-
SP3.

[17] STAR 9000406010 (PT PX) – VCD and SAIF file reader in PT PX D-2009.12-SP1 reports
twice as many cells in the design; fix expected in PT PX D-2010.06-SP2.

[18] Case ID 8000357887 (VCS) – VPI force erases SDF delays; fixed in VCS C-2009.06-6 and
D-2010.06.

[19] STAR 9000401865 (PT PX) – Losing toggles when reading in unit delay VCD file; Open
issue.

[20] filter_vcd (filter_vcd.cpp) code has been released and is available on www.veripool.org

[21] force_reg.c (VCS PLI code) has been released and is available on www.veripool.org

http://www.veripool.org/�
http://www.veripool.org/�

