
Verilator:
Speedy Reference Models, Direct from RTL

Wilson Snyder
Veripool.org

wsnyder@wsnyder.org

http://www.veripool.org/papers

Agenda

• Modeling Hardware
• Intro to Verilator
• Verilator Internals
• Futures
• Conclusion
• Q & A

Verilator Reference Modeling 2017-10 2

Modeling Hardware

Hardware/Software Co-design

• Products are a mix of hardware and software
• Therefore, both need to be designed in parallel
• What abstraction of HW can SW develop on?

• Ideal:
– Accurate as real hardware
– Fast as real hardware
– Minimal effort to develop model
– Free runtime – i.e. develop SW anywhere

Verilator Reference Modeling 2017-10 4

1 GHz
100 MHz

2 MHz
500 kHz

10 kHz
5 kHz

500 Hz
50 Hz

Hardware
FPGA/Emulator

Hand-designed architectural model
Hand-designed performance model

Hand-designed cycle-accurate C model
Verilator (future multithreaded?)

Verilator
Full-chip simulation

Performance (Log scale)

Levels of Abstraction vs. Performance

Verilator Reference Modeling 2017-10 5

Accurate,
low effort,
runs on laptops

Inaccurate,
high effort,
runs on laptops

Accurate,
high effort,
high cost

Accurate + assertions,
low effort,
requires license

Intro to Verilator

Verilator is a Compiler

• Verilator compiles synthesizable Verilog into C++
– Matches synthesis rules, not simulation rules
– Time delays ignored (a <= #{n} b;)
– Only two state simulation (and tri-state busses)
– Unknowns are randomized (better than Xs)

• Creates C++/SystemC wrapper

• Creates own internal interconnect
– Plays several tricks to get good, fast code

Verilator Reference Modeling 2017-10 7

Example: Getting Started
• (From https://www.veripool.org/projects/verilator/wiki/Installing)

• Install RPM
apt-get install verilator

• Or, the latest from sources
(once) git clone http://git.veripool.org/git/verilator

cd verilator
git pull
autoconf
./configure
make
make install

• Read docs and example
verilator --help

Verilator Reference Modeling 2017-10 8

Example: First Module

• Lint check your code
verilator –lint-only -Wall Convert.v

Verilator Reference Modeling 2017-10 9

module Convert;
input clk
input [31:0] data;
output [31:0] out;

initial $display(“Hello flip-flop”);
always_ff @ (posedge clk)

out <= data;
endmodule

Convert.v

Example: Translation

• Translate to a C++ class (also can do SystemC module – not shown)

verilator –cc Convert.v

#include "verilated.h"

class VConvert {
bool clk;
uint32_t data;
uint32_t out;

void eval();
void final();

}

module Convert;
input clk
input [31:0] data;
output [31:0] out;

initial $display(“Hello flip-flop”);
always_ff @ (posedge clk)

out <= data;
endmodule

Verilator Reference Modeling 2017-10 10

Convert.v obj_dir/VConvert.h

• Output in obj_dir/
• Verilog top module became a C++ class (obj_dir/VConvert.h)
• Inputs and outputs map directly to bool, uint32_t, or array of uint32_t's

Example: Calling the model

• Write .cpp file to call the Verilated class
– Verilator doesn’t make time pass!

• The key difference from verification-style simulators

class VConvert {
bool clk;
uint32_t data;
uint32_t out;

void eval();
void final();

}

#include “VConvert.h”

int main() {
VConvert* topp = new VConvert();
for (int time=0;

time<100 && !Verilated::gotFinish()
++time) {

topp->data = 1;
topp->clk = !topp->clk;
topp->eval();
// … = topp->out();

}
topp->final();

}

Verilator Reference Modeling 2017-10 11

top.cpp

obj_dir/VConvert.h

Example: Compile and run

• Compile with e.g. GCC
make –C obj_dir –f VConvert.mk VConvert

• Run
obj_dir/Vconvert

• Other examples
1. verilator --help

2. “examples/” directory in the kit and installed files

Verilator Reference Modeling 2017-10 12

Hello flip-flop

Verilator Internals

Verilator Optimizations

• End result is extremely fast Verilog simulation

module x;
INVERT inv (.a(clk), .z(clk_l));
wire zero = 1’b0
always @ (posedge clk_l) begin

b <= in || zero;
c <= b;
case (c[7:1])

7’h1: d <= 32’h12 ^ c[0];
// More logic

endcase
end

if (~ clk & last_clk) {

d = lookup_table[b & 255];

c = b;
b = in;
last_clk = clk;

}

Module Inlining,
inverter pushing

Table lookups

Code leveling
with no “previous values”
stored for <=‘s!

Constant
propagation

Verilator Reference Modeling 2017-10 14

AstNode

The core internal structure is an AstNode

1:2: ASSIGNW 0xa097 <e1312> {e29} @dt=0x9b0@(sw10)
1:2:1: ADD 0xa098 <e774> {e29} @dt=0x9b0@(w10)
1:2:1:1: VARREF 0xa099 <e781> {e29} @dt=0x9b0@(w10) in [RV] <- VAR in
1:2:1:2: CONST 0xa09a <e1556> {e29} @dt=0x9b0@(w10) 10'h1
1:2:2: VARREF 0xa09c <e754> {e29} @dt=0x9b0@(w10) sum [LV] => VAR sum

VARREF ADD

ASSIGNW

If you run with –debug, you’ll see this in a .tree file:

CONST
10’h1

VARREFVAR in

VAR sum

Source Code
Line Number.

Node Address LV indicates an lvalue –
it sets the variable.

assign in = 10’h1 + sum;

Data type

Verilator Reference Modeling 2017-10 15

Futures

Future Language Enhancements

• Generally, new features are added as requested, unless difficult 
– Unpacked Structs, Classes and methods
– Dynamic memory, new/delete
– Event loop, fork/join
– Someday, full UVM support?

• Lint
– Improve Verilog code quality checks to aid designers in finding bugs

Verilator Reference Modeling 2017-10 17

Future Single-Threaded Performance

• Bit-splitting to avoid UNOPTFLAT
– Bits in a vector that are always used separately should be separate signal

• Better merging of logic into parallel arrays
wire a0 = b0 | c0; wire a1 = b1 | c1;

-> wire a[1:0] = b[1:0] | c[1:0];

• Better icache packing by building up subroutines, structs and loops
mod1.foo = some_long_equation (mod1.bar)

mod0.foo = some_long_equation (mod0.bar])

-> for (i=0; i<2; ++i) mod[i].foo = function(mod[i].bar)

• Likewise dcache packing – Lots of room for research!
Verilator Reference Modeling 2017-10 18

Multithreaded Performance – The Easy Way

• Manually instantiate multiple Verilated models and user’s wrapper
threads them

Verilator Reference Modeling 2017-10 19

Verilated
sub1

Verilated
sub2

User’s
Calling
Code

…

Main Thread
Thread 2

Thread 3

module sub1;
…

endmodule

module sub2;
…

endmodule

#include “Vsub1.h”
#include “Vsub2.h”
void thread1 {

Vsub1* top1p = new Vsub1();
barrier(); // Wait for thread1
for (…) {

…
topp->eval();
barrier(); // Align threads

}
}
// thread 2 similar, using Vsub2
int main() {

threads_create(thread1,thread2);
wait(thread1,thread2);

}

sub1.v

top.cpp (PSEUDO CODE)

sub2.v

Multithreaded Performance – Partitioning

• True Automatic Model Partitioning
– Decompose circuit scheduling graph into partitions
– Schedule the partitions separately (“trains”)
– Dynamically schedule trains on threads
– Should look to users just like single-threaded

• Automatic parallelism of the whole socket!
– ThunderX2 -> 32 cores, 128 threads, per socket!
– Under best case can get superscalar performance if fits in caches
– Great PhD thesis

Verilator Reference Modeling 2017-10 20

Locked Multithreading
always_ff @ (posedge clk)

mode_r <= mode;
c1 <= F1(a1, c1, mode_r);
c2 <= F2(a2, c2, mode_r);
out <= F3(c1);

mode_r_dly = mode

Verilator Reference Modeling 2017-10

mode

c1_dly = F1(a1, c1, mode_r)

mode_r_dly

c1_dly

out_dlyout_dly = F3(c1)

a1

out

c2_dly = F1(a2, c2, mode_r) c2 = c2_dly

mode_r

c2_dly

c2

a2

c1

mode_r = mode_r_dly

c1 = c1_dly

out = out_dly

Locked Multithreading
always_ff @ (posedge clk)

mode_r <= mode;
c1 <= F1(a1, c1, mode_r);
c2 <= F2(a2, c2, mode_r);
out <= F3(c1);

mode_r_dly = mode

Verilator Reference Modeling 2017-10

mode

c1_dly = F1(a1, c1, mode_r)

mode_r_dly

c1_dly

out_dlyout_dly = F3(c1)

a1

out

c2_dly = F1(a2, c2, mode_r) c2 = c2_dly

mode_r

c2_dly

c2

a2

1. Graph is partitioned into “trains”.
2. Atomic locks picked to involve minimal signals

(Probably a lock really covers multiple signals)
3. Compute locked outputs ASAP
4. Use read locks ASAP, then do other stuff

c1

mode_r = mode_r_dly

c1 = c1_dly

out = out_dly

decrement(lk_mode_r)

decrement(lk_mode_r)

decrement(lk_c1)

wait(lk_mode_r==0)

wait(c1==0)

lk_mode_r = 2

lk_c1 = 1

wait(lk_eval[1])

wait(lk_eval[2])

wait(lk_eval[3])

wait(lk_eval[0])lk_eval[trains] = 1 lk_eval[0] = false

lk_eval[1] = false

lk_eval[2] = false

lk_eval[3] = false

wait (!lk_eval[train])

Conclusion

You Can Help (1 of 2)

• Firstly, need more testcases!
– Many enhancements are gated by testing and debugging

• Large standalone test cases
– Need a large testchips and simple testbenches.
– Port a large SoCs
– Add a tracing and cycle-by-cycle shadow simulation mode, so finding

introduced bugs is greatly simplified?

Verilator Reference Modeling 2017-10 24

You Can Help (2 of 2)

• Run gprof/oprofile and fix bottlenecks
– Most optimizations came from “oh, this could be faster”

• Tell us what changes you’d like to see
– We don’t hear from most users, and have no idea what they find frustrating.

• Advocate.

• Of course, patches and co-authors always wanted!

Verilator Reference Modeling 2017-10 25

Contributing Back

• The value of Open Source is in the Community!
• Use Forums
• Use Bug Reporting

– Even if to say what changes you’d like to see
• Try to submit a patch yourself

– Many problems take only a few hours to resolve yourself; often less time than
packaging up a test case for an EDA company!

– Even if just documentation fixes!
– Great experience for the resume!

• Advocate

Verilator Reference Modeling 2017-10 26

Conclusions
• Adopt Verilator

– Supported
• Continual language improvements
• Growing support network for 20+ years
• Run faster than major simulators

– Open Source Helps You
• Easy to run on laptops or SW developer machines
• Get bug fixes in minutes rather than months
• Greatly aids commercial license negotiation

– Keep your Commercial Simulators
• SystemVerilog Verification, analog models, gate SDF, etc.

Verilator Reference Modeling 2017-10 27

Verilog-Mode for Emacs
• Thousands of users, including most IP houses
• Fewer lines of code to edit means fewer bugs
• Indents code correctly, too
• Not a preprocessor,

code is always “valid” Verilog
• Automatically injectable

into older code.

GNU Emacs (Verilog-Mode))

…
/*AUTOLOGIC*/

a a (/*AUTOINST*/);

GNU Emacs (Verilog-Mode))

/*AUTOLOGIC*/
// Beginning of autos
logic [1:0] bus; // From a,b
logic y; // From b
mytype_t z; // From a
// End of automatics

a a (/*AUTOINST*/
// Outputs
.bus (bus[0]),
.z (z));

Verilator Reference Modeling 2017-10 28

• Verilator and open source design tools
at http://www.veripool.org
– Downloads
– Bug Reporting
– User Forums
– News & Mailing Lists
– These slides at http://www.veripool.org/papers/

Sources

Verilator Reference Modeling 2017-10 29

