BOSTON
T

-

505 Registers or Bust

Wilson Snyder
Nauticus Networks

Vregs 2

Agenda Y@H

Introduction

CSR RTL Optimizations

— Hiding Constants
— Loading using Concatenation
— Reset Area

Simulation Speedups

Vregs - Extracting CSRs from Documentation
— Definitions

— Enumerations

— Classes
— Registers

Obtaining Vregs

Vregs
VeriPag|

N
S'J | ntroduction

—
i

3

o Last Tapeout (Conexant, Inc.)
— 505 CSR Layouts Documented
— Representing 190KB of storage

e Maintaining the spec relative to RTL design was painful

« This presentation covers the techniques we used to reduce the
engineering cost of these CSRs:
— Simplify RTL code
— Remove redundant information
— Speed up simulation
— Spec as golden reference

N
Sample CSR Code (1 of 2)

Vregs
VeriPag|

4

nodul e regex 1 (/*AUTQARG/);

/1 Synchronous reset

/1 1/0O Address bus (byte address)
[l 1/OWite data bus
[l 11O Wite strobe pul se

I nput cl k;

I nput reset

/Il 1/Cs fromthe CPU or nenory bus
I nput [31: 2] | 0_addr ess;

I nput [31:0] | 0_wdat a;

I nput | 0_wstrhb;

out put [31: 0] | 0_rdat a;

[/ The 1/ 0O CSR val ues

[/ 1/ 0O Read data bus

/1 MemAdr CSR (at address 4)
/1 MenCtl CSR (at address 0[0])

out put [31: 0] memadr _r;
out put memena_r;
/ * AUTOREGF/
—»| io_address io_data [—>
—P»| io_wdata
—»| i0_wstrb
memadr_r —»
memena_r |—»
— ”| reset_
—»p clk

N
Sample CSR Code (2 of 2)

Vregs
VeriPag|

5

[/==== Witing I/Oregs
al ways @ (posedge cl k) begin
I f (~reset_) begin
mermadr _r <= 31' hO;
nmenena_r <= 1'bO;
end
el se begin
if (1o wtrb &k {io_address[31l: 2], 2' b00} ==
32' h0000_0000) begin
menmena_r <= i o_wdata[0];
end
if (o wtrb &k {io_address[31l: 2], 2' b00} ==
32' h0000_0004) begin
memadr _r <= i o_wdat a[30: 0] ;
end
end
end
/|| ==== Reading I/O regs
always @ (/*AS*/) begin
casex ({i o_address[31:2], 2" b00})
32' h0O0O00_0000: io rdata = {30' b0, nenena r};
32' h0000_0004: io_rdata = {1' b0, nenadr r};
defaul t: o rdata = 32'h0; // 111 egal
endcase
end
endnodul e

addr ess

N

Wi Hide Co

R
il

FilLod i |

nstants

Vregs 6

“define RA MenEna 32' h0000 0000
“define RA_ MemAdr

32' h0000_0004

[/==== Witing I/Oregs
al ways @ (posedge cl k) begin
If (~reset_) begin
mermadr _r <= 31' hO;
nmenena_r <= 1'bO;

end
el se begin
if (iowtrb & {io_address[31: 2], 2' b00}
"RA Mentna begi n
menmena_r <= i o_wdata[0];
end
if (iowstrb & {io_address[31: 2], 2' b0}
" RA_MemAdr beqgi n
memadr _r <= io_wdata[30: 0],
end
end
end
/|| ==== Reading I/O regs
always @ (/*AS*/) begin
casex ({i o_address[31:2], 2" b00})
"RA MenEna:; 4 o rdata =
"RA MemAdr : o rdata =
def aul t: lo_rdata = 32' hO;
endcase

end

{30' b0, nenena_r};
{1' b0, nemadr r};
1l egal

Constant Hiding

All constants in the
code should be
extracted into defines.

addr ess

N

R
il

FilLod i |

'Jﬂ Concatenation w/ "unused" signal

Vregs 7
VeriPag|

“define RWRES MenEna
“defi ne RWRES MenAdr
al ways @ (posedge cl k) begin
If (~reset) begin
menmadr _r <= 31' hO;
menmena_r <= 1'b0;
end
el se begin

I f (1o wstrb & {io_address[31: 2], 2' b00} ==

{unused[31: 1],
{unused[31],

memadr _r}

"RA Mentna) begin
RW RES MenEna <= i o0 _wdat a;

end

If (iowstrb & {i o _address[31: 2], 2\b0
"RA MemAdr) begin
RW RES MemAdr <= i o _wdat a;

end
end
unused = 32' h0O;
end
/|| ==== Reading I/O regs
always @ (/*AS*/) begin
unused = 32' h0O;

casex ({i o_address[31:2], 2" b00})
| 0_rdata
I 0_rdata
I 0_rdata

" RA MenEna:
"RA MemAdr :
def aul t:
endcase
end

RW RES_MenEna;
RW RES_MenmAdr :

-

nmenena_r}

Concatenation

Allows same definition to be used
for reading and writing, and
places register to signal mapping
in one place. Unused is set to
zero to prevent any logic from
being made during synthesis.

32'h0; // Illegal address

Vregs

!
SIJQ Synchronous Reset Area

R
il

FilLod i |

8

al ways @ (posedge cl k) begin
If (~reset]) begin
nmenpdr _r <= 31' hO;
mengrja r <= 1' bO;
end
el se begi|n
I f [ijo wstrb && {io_address[31l: 2], 2' b00} ==
"RA _Mentna) begin
RW RES MentEna <= i o_wdat a;
end
i f [ijowstrb && {i o _address[31: 2], 2" b00} ==
"RA MemAdr) begin
RW RES MemAdr <= i o0_wdat a;
end 4
end Sync Reset
unused = |3R' hO;

)/

V

wire [31:0] io wdata zrst = {32{reset _}} & io _wdata;
al ways @ (posedge cl k) begin

end We can zero the data at the "top" of the

chip and just load all registers on reset.

“define WRREGTEST ~reset || 1o wstrb &% {io_address[31: 2], 2" b00}
i f (WRREGTEST == "RA MentEna) RWRES MentEna <= i o_wdat a;
i f (WRREGTEST == "RA MenAdr) RWRES MemAdr <= i o_wdat a;

unused = 32' hO;
end

¥ Vl’e(;.jS
Direct Routines (1 of 2) VeriPog|

9

* Initializing large simulations can be a problem
— 190KB of CSR data => 20 minutes of VCS simulation time

e Eliminate CSR write time!
— Most time is in clocking the model

— Have tasks for read/write of CSR in zero time:
direct read(adr), direct wite(adr, data)

e Usage:
— Verify direct functions work the same as non-direct functions
— Tests can then direct_write to initialize
— Software initialization can be trapped to use the same tasks.
— 20 minutes is now ~20 seconds.

AR
b 1] 1 1

FilLod i |

A Vregs 10
S'le Direct Routines (2 of 2) @

task direct_wite;
I nput [31:0] address;
I nput [31:0] wdat a;
reg [31: 0] unused;
begi n
unused = 32' hO;
case (address)
"RA MenEna: "~ RWRES Mentna <= wdat a;
"RA MenmAdr: T RWRES MemAdr <= wdat a;
endcase
end
endt ask

task direct _read;
I nput [31:0] address;
out put [31:0] rdata;
reg [31: 0] unused;
begi n
unused = 32' hO;
case (address)
"RA Mentna: rdata
"RA MemAdr: rdata
endcase
end
endt ask

" RW RES MenEna;
"RW RES MenAdr ;

Vregs

N
Specification as Golden Reference

o Typically

— Architects/HW team write the CSR definitions into a specification
— HW team writes RTL code implementing CSRs
— HW team verifies the CSRs

— SW team uses the CSRs

« Each of these stages often recreate the same CSR information

« Solution:
— Write specification in standard way
— Derive RTL defines from specification
— Derive Verification tests from specification
— Derive SW defines (C defines and classes) from specification

Vregs 13

g"Jh Vregs Y@H

BOSTON
= o

|
e e B

e Our solution: Vregs

e Vregs Flow:
— Write specification in Word/ Framemaker/ etc.
— Save document as HTML
— Run Vregs
=Vregs writes Verilog header file
=Vregs writes C++ header file
=Vregs writes C++ class file
=Vregs writes Test file
«... and can write anything else you teach it.

0
: Vregs - Definitions

« Specification Document:

Mnemonic Constant Definition
VR_WORD_BITS | 4'd32 Bits in a word. (All but 1st paragraph ignored.)
VR_UNINIT_VAL | 32’hfeed face Default value for VR ram.

o Creates in Vregs spec_ defs.v:

“define VR WORD BITS 4’ d32 // Bits in a word
“define VR UNINIT VAL 32" hfeedface// Default value for VR

* Creates in Vregs spec_defs.h:

#define VR WORD BITS 32 /[* Bits in a word */
#define VR UNINI T_VAL OxfeedfaceUL/* Default value for VR*/

)
Vregs - Enumerations

« Specification Document:

Enum Ex

Mnemonic Constant Definition

INIT 4’0000 Initial state.

READ 4’0110 Read Memory State.

o Creates in Vregs spec_ defs.v:

“define EXINIT 4’ hO /[l Initial State
“define EX READ 4’ hc /'l Read Menory State

 Creates in Vregs spec_class.h:
// Actually a class is used so the ASCI|I nane of the states
/[l can be printed out, but effectively:

enum Ex {
INIT = 0x0, // Initial State
READ = Oxc, // Read Menory State
MAX = Oxd}; // WMaxinmum State Val ue

N
Vregs - Classes (1 of 2)

« Specification Document:

Class lpHdr

Bit Mnemonic | Type | Constant Definition

wO0[31:28] VerNum 4 Protocol version number.
wO0[15:0] | TotLen size t Total Length.

wl[15] Flag2 Fragment Flag MSB

e Creates in Vregs _spec_defs.v:

“define CE | pHdr VerNum 31 /1l NBB: Protocol Version
“define CB | pHdr VerNum 28 /] LSB:. Protocol Version
“define CE | pHdr Tot Len 15 /[l NSB: Total Length
“define CB | pHdr Tot Len 0 // LSB: Total Length
“define CE | pHdr Fl ag2 47 [l NMSB:. Fragnent Flag

“define CB | pHdr Fl ag2 47 /1 LSB:. Fragnent Flag

Vregs 17

"h VeriPag|
S'L Vregs - Classes (2 of 2)
 Creates in Vregs spec class.h:
class | pHdr {
const static size t SIZE = 8; /] Bytes
nint32.t mw2]; /'l Data to Store
unt32t wint b) { return mwb]; } /'l Read word
voi d wiint b, uint32.t val) { mwb] =val; } //Wite
uint32 t verNum (void) { return (extract[31:28]); }
voi d ver Num (void, uint32 t b) {deposit[31:28]=b; }
unt32 t totLen (void) { return (extract[31l:15]); }
voi d totLen (void, uint32 t b) {deposit[31l:15]=b; }
bool flag2 (void) { return (extract[47]); }
voi d flag2 (void, bool b) {deposit[47]=b; }
b

Also, additional code for endianess correction, type-casting,
and dumping the structure.

N
Vregs - CSRs (1 of 2)

« Specification Document:

Register MemCifg
Address 0x2100 0100

Bit Mnemonic | Access | Reset | Definition

4 EccError RW 0 ECC Error Detected.

3:2 Banks RO pin Number of banks. Read from config pins.
0 Enable RW 0 Set to enable memory controller.

e Creates in Vregs _spec_defs.v:

“define RA MenCfg 32' h21000100 // Address of register
“define CE MenCf g Enabl e O // NMSB: Set to enable nenory
“define CB MenCfg Enabl e /] LSB: Set to enable nmenory
“define CE MenCf g Banks [/ NBB: Nunber of banks
“define CB MenCf g Banks [/ LSB: Nunber of banks
“define CE MenCfg EccError [/ NBB. ECC Error Detected
“define CB MenCfg EccError /| LSB. ECC Error Detected

~ DN WO

Vregs 19

) -
Vregs - CSRs (2 of 2) E@ﬁ

 Creates in Vregs spec class.h:
class R MenCfg {

publ i c:
const static size t SIZE = 4; /| Bytes
nint32.t mw1j; /] Data to Store
unt32t wint b) { return mwb]; } /'l Read word
voi d wint b, uint32.t val) { mwb] =val; } //Wite
bool enable (void) { return (extract[O0]); }
voi d enabl e (void, bool b) {deposit[0]=Db; }

private: // Banks is read-only by applications, so private
urnt32 t banks (void) { return (extract[3:2]); }

publ i c:
voi d banks (void, bool b) {deposit[3:2]=b; }
bool eccError (void) { return (extract[4]); }
voi d eccError (void, bool b) {deposit[4]=b; }

¥

!
S'le Vregs- Using aCSR

= e
Lol

Vregs
VeriPag|

20

Example User's
C Code to read then write a CSR:

#i ncl ude "vregs spec_cl ass. h"

void init_nmenory (void) {
R MenCfg csr;

Il (address, dataptr,
read_nenory (RA MenCfg, &csr,
csr.enabl e(true); /] Sets bit

wite nenory (RA MenCfg, &csr,

bytes)
csr. Sl ZE) ;
O, the enable bit
csr. Sl ZE) ;

Vregs 21

N .
Conclusions F@H

« With the suggested RTL coding techniques, we
— Improved readability
— Removed redundancy
— Reduced maintaince overhead
— Reduced area
— Accelerated simulation time

« With Vregs converting the document to headers, we
— Removed redundancy
— Reduced the design cycle
— Have the specification as the primary reference document
(Which also forces designers to keep it up to date!)

Vregs 22

Wl Download Vregs from Veripol
20 Veripool.com

 Downloading Vregs:
— Perl Based
— Object Oriented with hooks for customization
— GNU Licensed
— http://veripool.com/vregs.html

« Also on my site:
— Dinotrace — Waveform Viewer
— Gspice — Library Cell Characterization
— Schedule::Load — Load Balancing (ala LSF)
— SystemPerl — Simplify and Lint SystemC
— Verilator — Verilog to SystemC translator
— Verilog-Pli — Verilog Perl preprocessor and signal renaming
— Verilog-Mode - /*AUTO...*/ Expansion, Highlighting

