
1

505 Registers or Bust

Wilson Snyder
Nauticus Networks

wsnyder@wsnyder.org
http://veripool.com

2Vregs

Agenda

• Introduction
• CSR RTL Optimizations

– Hiding Constants
– Loading using Concatenation
– Reset Area

• Simulation Speedups
• Vregs - Extracting CSRs from Documentation

– Definitions
– Enumerations
– Classes
– Registers

• Obtaining Vregs

3Vregs

Introduction

• Last Tapeout (Conexant, Inc.)
– 505 CSR Layouts Documented
– Representing 190KB of storage

• Maintaining the spec relative to RTL design was painful
• This presentation covers the techniques we used to reduce the

engineering cost of these CSRs:
– Simplify RTL code
– Remove redundant information
– Speed up simulation
– Spec as golden reference

4Vregs

Sample CSR Code (1 of 2)

module regex_1 (/*AUTOARG*/);
input clk;
input reset_; // Synchronous reset
// I/Os from the CPU or memory bus
input [31:2] io_address; // I/O Address bus (byte address)
input [31:0] io_wdata; // I/O Write data bus
input io_wstrb; // I/O Write strobe pulse
output [31:0] io_rdata; // I/O Read data bus
// The I/O CSR values
output [31:0] memadr_r; // MemAdr CSR (at address 4)
output memena_r; // MemCtl CSR (at address 0[0])
/*AUTOREG*/

io_address
io_wdata
io_wstrb

reset_
clk

io_data

memadr_r
memena_r

5Vregs

Sample CSR Code (2 of 2)

//==== Writing I/O regs
always @ (posedge clk) begin

if (~reset_) begin
memadr_r <= 31'h0;
memena_r <= 1'b0;

end
else begin

if (io_wstrb && {io_address[31:2],2'b00} ==
32'h0000_0000) begin

memena_r <= io_wdata[0];
end
if (io_wstrb && {io_address[31:2],2'b00} ==

32'h0000_0004) begin
memadr_r <= io_wdata[30:0];

end
end

end
//==== Reading I/O regs
always @ (/*AS*/) begin

casex ({io_address[31:2],2'b00})
32'h0000_0000: io_rdata = {30'b0, memena_r};
32'h0000_0004: io_rdata = {1'b0, memadr_r};
default: io_rdata = 32'h0; // Illegal address

endcase
end

endmodule

6Vregs

//==== Writing I/O regs
always @ (posedge clk) begin

if (~reset_) begin
memadr_r <= 31'h0;
memena_r <= 1'b0;

end
else begin

if (io_wstrb && {io_address[31:2],2'b00} ==
32'h0000_0000) begin

memena_r <= io_wdata[0];
end
if (io_wstrb && {io_address[31:2],2'b00} ==

32'h0000_0004) begin
memadr_r <= io_wdata[30:0];

end
end

end
//==== Reading I/O regs
always @ (/*AS*/) begin

casex ({io_address[31:2],2'b00})
32'h0000_0000: io_rdata = {30'b0, memena_r};
32'h0000_0004: io_rdata = {1'b0, memadr_r};
default: io_rdata = 32'h0; // Illegal address

endcase
end

Hide Constants
`define RA_MemEna 32'h0000_0000
`define RA_MemAdr 32'h0000_0004
//==== Writing I/O regs
always @ (posedge clk) begin

if (~reset_) begin
memadr_r <= 31'h0;
memena_r <= 1'b0;

end
else begin

if (io_wstrb && {io_address[31:2],2'b00} ==
`RA_MemEna) begin

memena_r <= io_wdata[0];
end
if (io_wstrb && {io_address[31:2],2'b00} ==

`RA_MemAdr) begin
memadr_r <= io_wdata[30:0];

end
end

end
//==== Reading I/O regs
always @ (/*AS*/) begin

casex ({io_address[31:2],2'b00})
`RA_MemEna: io_rdata = {30'b0, memena_r};
`RA_MemAdr: io_rdata = {1'b0, memadr_r};
default: io_rdata = 32'h0; // Illegal address

endcase
end

Constant Hiding

All constants in the
code should be

extracted into defines.

Constant Hiding

All constants in the
code should be

extracted into defines.

7Vregs

always @ (posedge clk) begin
if (~reset_) begin

memadr_r <= 31'h0;
memena_r <= 1'b0;

end
else begin

if (io_wstrb && {io_address[31:2],2'b00} ==
`RA_MemEna) begin

memena_r <= io_wdata[0];
end
if (io_wstrb && {io_address[31:2],2'b00} ==

`RA_MemAdr) begin
memadr_r <= io_wdata[30:0];

end
end

end
//==== Reading I/O regs
always @ (/*AS*/) begin

casex ({io_address[31:2],2'b00})
`RA_MemEna: io_rdata = {30'b0, memena_r};
`RA_MemAdr: io_rdata = {1'b0, memadr_r};
default: io_rdata = 32'h0; // Illegal address

endcase
end

`define RWIRES_MemEna {unused[31:1], memena_r}
`define RWIRES_MemAdr {unused[31], memadr_r}
always @ (posedge clk) begin

if (~reset_) begin
memadr_r <= 31'h0;
memena_r <= 1'b0;

end
else begin

if (io_wstrb && {io_address[31:2],2'b00} ==
`RA_MemEna) begin

RWIRES_MemEna <= io_wdata;
end
if (io_wstrb && {io_address[31:2],2'b00} ==

`RA_MemAdr) begin
RWIRES_MemAdr <= io_wdata;

end
end
unused = 32'h0;

end
//==== Reading I/O regs
always @ (/*AS*/) begin

unused = 32'h0;
casex ({io_address[31:2],2'b00})

`RA_MemEna: io_rdata = RWIRES_MemEna;
`RA_MemAdr: io_rdata = RWIRES_MemAdr;
default: io_rdata = 32'h0; // Illegal address

endcase
end

Concatenation w/ "unused" signal

Concatenation

Allows same definition to be used
for reading and writing, and

places register to signal mapping
in one place. Unused is set to
zero to prevent any logic from
being made during synthesis.

Concatenation

Allows same definition to be used
for reading and writing, and

places register to signal mapping
in one place. Unused is set to
zero to prevent any logic from
being made during synthesis.

8Vregs

always @ (posedge clk) begin
if (~reset_) begin

memadr_r <= 31'h0;
memena_r <= 1'b0;

end
else begin

if (io_wstrb && {io_address[31:2],2'b00} ==
`RA_MemEna) begin

RWIRES_MemEna <= io_wdata;
end
if (io_wstrb && {io_address[31:2],2'b00} ==

`RA_MemAdr) begin
RWIRES_MemAdr <= io_wdata;

end
end
unused = 32'h0;

end

Synchronous Reset Area

Sync Reset

We can zero the data at the "top" of the
chip and just load all registers on reset.

Sync Reset

We can zero the data at the "top" of the
chip and just load all registers on reset.

wire [31:0] io_wdata_zrst = {32{reset_}} & io_wdata;
always @ (posedge clk) begin

`define WRREGTEST ~reset_ || io_wstrb && {io_address[31:2],2'b00}
if (WRREGTEST == `RA_MemEna) RWIRES_MemEna <= io_wdata;
if (WRREGTEST == `RA_MemAdr) RWIRES_MemAdr <= io_wdata;
unused = 32'h0;

end

9Vregs

Direct Routines (1 of 2)

• Initializing large simulations can be a problem
– 190KB of CSR data => 20 minutes of VCS simulation time

• Eliminate CSR write time!
– Most time is in clocking the model
– Have tasks for read/write of CSR in zero time:

direct_read(adr), direct_write(adr, data)

• Usage:
– Verify direct functions work the same as non-direct functions
– Tests can then direct_write to initialize
– Software initialization can be trapped to use the same tasks.
– 20 minutes is now ~20 seconds.

10Vregs

Direct Routines (2 of 2)

task direct_read;
input [31:0] address;
output [31:0] rdata;
reg [31:0] unused;
begin
unused = 32'h0;
case (address)

`RA_MemEna: rdata = `RWIRES_MemEna;
`RA_MemAdr: rdata = `RWIRES_MemAdr;

endcase
end

endtask

task direct_write;
input [31:0] address;
input [31:0] wdata;
reg [31:0] unused;
begin

unused = 32'h0;
case (address)

`RA_MemEna: `RWIRES_MemEna <= wdata;
`RA_MemAdr: `RWIRES_MemAdr <= wdata;

endcase
end

endtask

11

Vregs

12Vregs

Specification as Golden Reference

• Typically
– Architects/HW team write the CSR definitions into a specification
– HW team writes RTL code implementing CSRs
– HW team verifies the CSRs
– SW team uses the CSRs

• Each of these stages often recreate the same CSR information

• Solution:
– Write specification in standard way
– Derive RTL defines from specification
– Derive Verification tests from specification
– Derive SW defines (C defines and classes) from specification

13Vregs

Vregs

• Our solution: Vregs

• Vregs Flow:
– Write specification in Word/ Framemaker/ etc.
– Save document as HTML
– Run Vregs

?Vregs writes Verilog header file
?Vregs writes C++ header file
?Vregs writes C++ class file
?Vregs writes Test file
?… and can write anything else you teach it.

14Vregs

Vregs - Definitions

• Specification Document:
Mnemonic Constant Definition

VR_WORD_BITS 4’d32 Bits in a word. (All but 1st paragraph ignored.)

VR_UNINIT_VAL 32’hfeed_face Default value for VR ram.

• Creates in Vregs_spec_defs.v:
`define VR_WORD_BITS 4’d32 // Bits in a word
`define VR_UNINIT_VAL 32’hfeedface // Default value for VR

• Creates in Vregs_spec_defs.h:
#define VR_WORD_BITS 32 /* Bits in a word */
#define VR_UNINIT_VAL 0xfeedfaceUL /* Default value for VR*/

15Vregs

Vregs - Enumerations

• Specification Document:
Enum Ex
Mnemonic Constant Definition

INIT 4’b0000 Initial state.

READ 4’b0110 Read Memory State.

• Creates in Vregs_spec_defs.v:
`define EX_INIT 4’h0 // Initial State
`define EX_READ 4’hc // Read Memory State

• Creates in Vregs_spec_class.h:
// Actually a class is used so the ASCII name of the states
// can be printed out, but effectively:
enum Ex {

INIT = 0x0, // Initial State
READ = 0xc, // Read Memory State
MAX = 0xd}; // Maximum State Value

16Vregs

Vregs - Classes (1 of 2)

• Specification Document:
Class IpHdr

• Creates in Vregs_spec_defs.v:
`define CE_IpHdr_VerNum 31 // MSB: Protocol Version
`define CB_IpHdr_VerNum 28 // LSB: Protocol Version
`define CE_IpHdr_TotLen 15 // MSB: Total Length
`define CB_IpHdr_TotLen 0 // LSB: Total Length
`define CE_IpHdr_Flag2 47 // MSB: Fragment Flag
`define CB_IpHdr_Flag2 47 // LSB: Fragment Flag

Bit Mnemonic Type Constant Definition

w0[31:28] VerNum 4 Protocol version number.

w0[15:0] TotLen size_t Total Length.

w1[15] Flag2 Fragment Flag MSB

17Vregs

Vregs - Classes (2 of 2)

• Creates in Vregs_spec_class.h:
class IpHdr {
const static size_t SIZE = 8; // Bytes
nint32_t m_w[2]; // Data to Store
uint32_t w(int b) { return m_w[b]; } // Read word
void w(int b, uint32_t val) { m_w[b] = val; } //Write
uint32_t verNum (void) { return (extract[31:28]); }
void verNum (void, uint32_t b) {deposit[31:28]=b; }
uint32_t totLen (void) { return (extract[31:15]); }
void totLen (void, uint32_t b) {deposit[31:15]=b; }
bool flag2 (void) { return (extract[47]); }
void flag2 (void, bool b) {deposit[47]=b; }

};

Also, additional code for endianess correction, type-casting,
and dumping the structure.

18Vregs

Vregs - CSRs (1 of 2)

• Specification Document:
Register MemCfg
Address 0x2100_0100

• Creates in Vregs_spec_defs.v:
`define RA_MemCfg 32'h21000100 // Address of register
`define CE_MemCfg_Enable 0 // MSB: Set to enable memory
`define CB_MemCfg_Enable 0 // LSB: Set to enable memory
`define CE_MemCfg_Banks 3 // MSB: Number of banks
`define CB_MemCfg_Banks 2 // LSB: Number of banks
`define CE_MemCfg_EccError 4 // MSB: ECC Error Detected
`define CB_MemCfg_EccError 4 // LSB: ECC Error Detected

Bit Mnemonic Access Reset Definition

4 EccError RW 0 ECC Error Detected.

3:2 Banks RO pin Number of banks. Read from config pins.

0 Enable RW 0 Set to enable memory controller.

19Vregs

Vregs - CSRs (2 of 2)

• Creates in Vregs_spec_class.h:
class R_MemCfg {
public:
const static size_t SIZE = 4; // Bytes
nint32_t m_w[1]; // Data to Store
uint32_t w(int b) { return m_w[b]; } // Read word
void w(int b, uint32_t val) { m_w[b] = val; } //Write
bool enable (void) { return (extract[0]); }
void enable (void, bool b) {deposit[0]=b; }

private: // Banks is read-only by applications, so private
uint32_t banks (void) { return (extract[3:2]); }

public:
void banks (void, bool b) {deposit[3:2]=b; }
bool eccError (void) { return (extract[4]); }
void eccError (void, bool b) {deposit[4]=b; }

};

20Vregs

Vregs - Using a CSR

• Example User's
C Code to read then write a CSR:

#include "vregs_spec_class.h"

void init_memory (void) {
R_MemCfg csr;
// (address, dataptr, # bytes)
read_memory (RA_MemCfg, &csr, csr.SIZE);
csr.enable(true); // Sets bit 0, the enable bit
write_memory (RA_MemCfg, &csr, csr.SIZE);

}

21Vregs

Conclusions

• With the suggested RTL coding techniques, we
– Improved readability
– Removed redundancy
– Reduced maintaince overhead
– Reduced area
– Accelerated simulation time

• With Vregs converting the document to headers, we
– Removed redundancy
– Reduced the design cycle
– Have the specification as the primary reference document

(Which also forces designers to keep it up to date!)

22Vregs

Download Vregs from
Veripool.com

• Downloading Vregs:
– Perl Based
– Object Oriented with hooks for customization
– GNU Licensed
– http://veripool.com/vregs.html

• Also on my site:
– Dinotrace – Waveform Viewer
– Gspice – Library Cell Characterization
– Schedule::Load – Load Balancing (ala LSF)
– SystemPerl – Simplify and Lint SystemC
– Verilator – Verilog to SystemC translator
– Verilog-Pli – Verilog Perl preprocessor and signal renaming
– Verilog-Mode - /*AUTO…*/ Expansion, Highlighting

